Friday, June 6, 2025
No menu items!
HomeNatureObservation of string breaking on a (2 + 1)D Rydberg quantum simulator

Observation of string breaking on a (2 + 1)D Rydberg quantum simulator

  • Gross, F. et al. 50 years of quantum chromodynamics: introduction and review. Eur. Phys. J. C 83, 1125 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bauer, C. W., Davoudi, Z., Klco, N. & Savage, M. J. Quantum simulation of fundamental particles and forces. Nat. Rev. Phys. 5, 420–432 (2023).

    Article 

    Google Scholar
     

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholl, P. et al. Quantum simulation of 2d antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wurtz, J. et al. Aquila: Quera’s 256-qubit neutral-atom quantum computer. Preprint at arxiv.org/abs/2306.11727 (2023).

  • Samajdar, R., Ho, W. W., Pichler, H., Lukin, M. D. & Sachdev, S. Quantum phases of Rydberg atoms on a kagome lattice. Proc. Natl Acad. Sci. USA 118, e2015785118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).

    CAS 

    Google Scholar
     

  • Bali, G. S., Neff, H., Düssel, T., Lippert, T. & Schilling, K. Observation of string breaking in QCD. Phys. Rev. D 71, 114513 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Altmann, J., Dubla, A., Greco, V., Rossi, A. & Skands, P. Towards the understanding of heavy quarks hadronization: from leptonic to heavy-ion collisions. Eur. Phys. J. C 85, 1 (2025).

    Article 

    Google Scholar
     

  • Florio, A. et al. Real-time nonperturbative dynamics of jet production in Schwinger model: quantum entanglement and vacuum modification. Phys. Rev. Lett. 131, 021902 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Hebenstreit, F., Berges, J. & Gelfand, D. Real-time dynamics of string breaking. Phys. Rev. Lett. 111, 201601 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kühn, S., Zohar, E., Cirac, J. I. & Ba nuls, M. C. Non-Abelian string breaking phenomena with matrix product states. J. High Energy Phys. 2015, 130 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pichler, T., Dalmonte, M., Rico, E., Zoller, P. & Montangero, S. Real-time dynamics in U(1) lattice gauge theories with tensor networks. Phys. Rev. X 6, 011023 (2016).


    Google Scholar
     

  • Verdel, R., Zhu, G.-Y. & Heyl, M. Dynamical localization transition of string breaking in quantum spin chains. Phys. Rev. Lett. 131, 230402 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Montvay, I. & Münster, G. Quantum Fields on a Lattice (Cambridge Univ. Press, 1997).

  • Sachdev, S. Topological order, emergent gauge fields, and fermi surface reconstruction. Rep. Prog. Phys. 82, 014001 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).

    Article 

    Google Scholar
     

  • Banerjee, D. et al. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. Phys. Rev. Lett. 109, 175302 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiese, U.-J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2015).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Aidelsburger, M. et al. Cold atoms meet lattice gauge theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 380, 20210064 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Klco, N., Roggero, A. & Savage, M. J. Standard model physics and the digital quantum revolution: thoughts about the interface. Rep. Prog. Phys. 85, 064301 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Di Meglio, A. et al. Quantum computing for high-energy physics: state of the art and challenges. PRX Quantum 5, 037001 (2024).

    Article 

    Google Scholar
     

  • Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaw, A. L. et al. Benchmarking highly entangled states on a 60-atom analogue quantum simulator. Nature 628, 71–77 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manovitz, T. et al. Quantum coarsening and collective dynamics on a programmable simulator. Nature 638, 86–92 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anand, S. et al. A dual-species Rydberg array. Nat. Phys. 20, 1744–1750 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cochran, T. A. et al. Visualizing dynamics of charges and strings in (2+1)D lattice gauge theories. Preprint at arxiv.org/abs/2409.17142 (2024).

  • Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klco, N. et al. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mil, A. et al. A scalable realization of local U(1) gauge invariance in cold atomic mixtures. Science 367, 1128–1130 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B. et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature 587, 392–396 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, N. H. et al. Digital quantum simulation of the Schwinger model and symmetry protection with trapped ions. PRX Quantum 3, 020324 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tan, W. L. et al. Domain-wall confinement and dynamics in a quantum simulator. Nat. Phys. 17, 742–747 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Frölian, A. et al. Realizing a 1D topological gauge theory in an optically dressed bec. Nature 608, 293–297 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mildenberger, J., Mruczkiewicz, W., Halimeh, J. C., Jiang, Z. & Hauke, P. Confinement in a \({{\mathbb{Z}}}_{2}\) lattice gauge theory on a quantum computer. Nature Physics 21, 312 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Meth, M. et al. Simulating two-dimensional lattice gauge theories on a qudit quantum computer. Nat. Phys. 21, 570–576 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De, A. et al. Observation of string-breaking dynamics in a quantum simulator. Preprint at arxiv.org/abs/2410.13815 (2024).

  • Kogut, J. & Susskind, L. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lagnese, G., Surace, F. M., Kormos, M. & Calabrese, P. False vacuum decay in quantum spin chains. Phys. Rev. B 104, L201106 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Darbha, S. et al. False vacuum decay and nucleation dynamics in neutral atom systems. Phys. Rev. B 110, 155103 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Feldmeier, J., Maskara, N., Köylüoğlu, N. U. & Lukin, M. D. Quantum simulation of dynamical gauge theories in periodically driven rydberg atom arrays. Preprint at arxiv.org/abs/2408.02733 (2024).

  • González-Cuadra, D., Zache, T. V., Carrasco, J., Kraus, B. & Zoller, P. Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Phys. Rev. Lett. 129, 160501 (2022).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Zache, T. V., González-Cuadra, D. & Zoller, P. Fermion-qudit quantum processors for simulating lattice gauge theories with matter. Quantum 7, 1140 (2023).

    Article 

    Google Scholar
     

  • Maskara, N. et al. Programmable simulations of molecules and materials with reconfigurable quantum processors. Nat. Phys. 21, 289–297 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Verresen, R., Lukin, M. D. & Vishwanath, A. Prediction of toric code topological order from Rydberg blockade. Phys. Rev. X 11, 031005 (2021).

    CAS 

    Google Scholar
     

  • Samajdar, R., Joshi, D. G., Teng, Y. & Sachdev, S. Emergent \({{\mathbb{z}}}_{2}\) gauge theories and topological excitations in Rydberg atom arrays. Phys. Rev. Lett. 130, 043601 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Levin, M. A. & Wen, X.-G. String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Chandrasekharan, S. & Wiese, U.-J. Quantum link models: a discrete approach to gauge theories. Nucl. Phys. B 492, 455–471 (1997).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Fradkin, E. & Shenker, S. H. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682–3697 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • González-Cuadra, D., Zohar, E. & Cirac, J. I. Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms. New J. Phys. 19, 063038 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes 5, https://doi.org/10.21468/SciPostPhysLectNotes (2018).

  • RELATED ARTICLES

    Most Popular

    Recent Comments