Gross, F. et al. 50 years of quantum chromodynamics: introduction and review. Eur. Phys. J. C 83, 1125 (2023).
Bauer, C. W., Davoudi, Z., Klco, N. & Savage, M. J. Quantum simulation of fundamental particles and forces. Nat. Rev. Phys. 5, 420–432 (2023).
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).
Scholl, P. et al. Quantum simulation of 2d antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).
Wurtz, J. et al. Aquila: Quera’s 256-qubit neutral-atom quantum computer. Preprint at arxiv.org/abs/2306.11727 (2023).
Samajdar, R., Ho, W. W., Pichler, H., Lukin, M. D. & Sachdev, S. Quantum phases of Rydberg atoms on a kagome lattice. Proc. Natl Acad. Sci. USA 118, e2015785118 (2021).
Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).
Bali, G. S., Neff, H., Düssel, T., Lippert, T. & Schilling, K. Observation of string breaking in QCD. Phys. Rev. D 71, 114513 (2005).
Altmann, J., Dubla, A., Greco, V., Rossi, A. & Skands, P. Towards the understanding of heavy quarks hadronization: from leptonic to heavy-ion collisions. Eur. Phys. J. C 85, 1 (2025).
Florio, A. et al. Real-time nonperturbative dynamics of jet production in Schwinger model: quantum entanglement and vacuum modification. Phys. Rev. Lett. 131, 021902 (2023).
Hebenstreit, F., Berges, J. & Gelfand, D. Real-time dynamics of string breaking. Phys. Rev. Lett. 111, 201601 (2013).
Kühn, S., Zohar, E., Cirac, J. I. & Ba nuls, M. C. Non-Abelian string breaking phenomena with matrix product states. J. High Energy Phys. 2015, 130 (2015).
Pichler, T., Dalmonte, M., Rico, E., Zoller, P. & Montangero, S. Real-time dynamics in U(1) lattice gauge theories with tensor networks. Phys. Rev. X 6, 011023 (2016).
Verdel, R., Zhu, G.-Y. & Heyl, M. Dynamical localization transition of string breaking in quantum spin chains. Phys. Rev. Lett. 131, 230402 (2023).
Montvay, I. & Münster, G. Quantum Fields on a Lattice (Cambridge Univ. Press, 1997).
Sachdev, S. Topological order, emergent gauge fields, and fermi surface reconstruction. Rep. Prog. Phys. 82, 014001 (2018).
Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. A. Deconfined quantum critical points. Science 303, 1490–1494 (2004).
Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).
Banerjee, D. et al. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. Phys. Rev. Lett. 109, 175302 (2012).
Wiese, U.-J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).
Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2015).
Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).
Aidelsburger, M. et al. Cold atoms meet lattice gauge theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 380, 20210064 (2022).
Klco, N., Roggero, A. & Savage, M. J. Standard model physics and the digital quantum revolution: thoughts about the interface. Rep. Prog. Phys. 85, 064301 (2022).
Di Meglio, A. et al. Quantum computing for high-energy physics: state of the art and challenges. PRX Quantum 5, 037001 (2024).
Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).
Shaw, A. L. et al. Benchmarking highly entangled states on a 60-atom analogue quantum simulator. Nature 628, 71–77 (2024).
Manovitz, T. et al. Quantum coarsening and collective dynamics on a programmable simulator. Nature 638, 86–92 (2025).
Anand, S. et al. A dual-species Rydberg array. Nat. Phys. 20, 1744–1750 (2024).
Cochran, T. A. et al. Visualizing dynamics of charges and strings in (2+1)D lattice gauge theories. Preprint at arxiv.org/abs/2409.17142 (2024).
Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).
Klco, N. et al. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018).
Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).
Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).
Mil, A. et al. A scalable realization of local U(1) gauge invariance in cold atomic mixtures. Science 367, 1128–1130 (2020).
Yang, B. et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature 587, 392–396 (2020).
Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).
Nguyen, N. H. et al. Digital quantum simulation of the Schwinger model and symmetry protection with trapped ions. PRX Quantum 3, 020324 (2022).
Tan, W. L. et al. Domain-wall confinement and dynamics in a quantum simulator. Nat. Phys. 17, 742–747 (2021).
Frölian, A. et al. Realizing a 1D topological gauge theory in an optically dressed bec. Nature 608, 293–297 (2022).
Mildenberger, J., Mruczkiewicz, W., Halimeh, J. C., Jiang, Z. & Hauke, P. Confinement in a \({{\mathbb{Z}}}_{2}\) lattice gauge theory on a quantum computer. Nature Physics 21, 312 (2025).
Meth, M. et al. Simulating two-dimensional lattice gauge theories on a qudit quantum computer. Nat. Phys. 21, 570–576 (2025).
De, A. et al. Observation of string-breaking dynamics in a quantum simulator. Preprint at arxiv.org/abs/2410.13815 (2024).
Kogut, J. & Susskind, L. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975).
Lagnese, G., Surace, F. M., Kormos, M. & Calabrese, P. False vacuum decay in quantum spin chains. Phys. Rev. B 104, L201106 (2021).
Darbha, S. et al. False vacuum decay and nucleation dynamics in neutral atom systems. Phys. Rev. B 110, 155103 (2024).
Feldmeier, J., Maskara, N., Köylüoğlu, N. U. & Lukin, M. D. Quantum simulation of dynamical gauge theories in periodically driven rydberg atom arrays. Preprint at arxiv.org/abs/2408.02733 (2024).
González-Cuadra, D., Zache, T. V., Carrasco, J., Kraus, B. & Zoller, P. Hardware efficient quantum simulation of non-abelian gauge theories with qudits on rydberg platforms. Phys. Rev. Lett. 129, 160501 (2022).
Zache, T. V., González-Cuadra, D. & Zoller, P. Fermion-qudit quantum processors for simulating lattice gauge theories with matter. Quantum 7, 1140 (2023).
Maskara, N. et al. Programmable simulations of molecules and materials with reconfigurable quantum processors. Nat. Phys. 21, 289–297 (2025).
Verresen, R., Lukin, M. D. & Vishwanath, A. Prediction of toric code topological order from Rydberg blockade. Phys. Rev. X 11, 031005 (2021).
Samajdar, R., Joshi, D. G., Teng, Y. & Sachdev, S. Emergent \({{\mathbb{z}}}_{2}\) gauge theories and topological excitations in Rydberg atom arrays. Phys. Rev. Lett. 130, 043601 (2023).
Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).
Levin, M. A. & Wen, X.-G. String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).
Chandrasekharan, S. & Wiese, U.-J. Quantum link models: a discrete approach to gauge theories. Nucl. Phys. B 492, 455–471 (1997).
Fradkin, E. & Shenker, S. H. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D 19, 3682–3697 (1979).
González-Cuadra, D., Zohar, E. & Cirac, J. I. Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms. New J. Phys. 19, 063038 (2017).
Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes 5, https://doi.org/10.21468/SciPostPhysLectNotes (2018).