Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).
Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).
Halperin, B. I. & Jain, J. K. Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).
Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).
Andreev, A. F. & Lifshits, I. M. Quantum theory of defects in crystals. Zh. Eksp. Teor. Fiz. 56, 2057–2068 (1969).
Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).
Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).
Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).
Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).
Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).
Lozovik, Y. E. & Yudson, V. I. Feasibility of superfluidity of paired spatially separated electrons and holes: a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).
Pogrebinsky, M. B. Mutual drag of carriers in a semiconductor-insulator-semiconductor system. Fiz. Tekh. Poluprovodn. 11, 637–644 (1977).
Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).
Li, J. I. A. et al. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898–903 (2019).
Liu, X. et al. Interlayer fractional quantum Hall effect in a coupled graphene double layer. Nat. Phys. 15, 893–897 (2019).
Zhang, N. J. et al. Excitons in the fractional quantum Hall effect. Nature 637, 327–332 (2025).
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).
Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).
Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).
Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).
Meisel, M. W. Supersolid 4He: an overview of past searches and future possibilities. Phys. B Condens. Matter 178, 121–128 (1992).
Vu, D. & Das Sarma, S. Excitonic phases in a spatially separated electron-hole ladder model. Phys. Rev. B 108, 235158 (2023).
Hu, Z. & Yang, K. Exciton crystal melting and destruction by disorder in a bilayer quantum Hall system with a total filling factor of one. Phys. Rev. B 110, 195307 (2024).
Chui, S. T., Wang, N. & Wan, C. Y. Quantum exciton solid in bilayer two-dimensional electron-hole systems. Phys. Rev. B 102, 125420 (2020).
Yoshioka, D. & MacDonald, A. H. Double quantum well electron-hole systems in strong magnetic fields. J. Phys. Soc. Jpn 59, 4211–4214 (1990).
Joglekar, Y. N., Balatsky, A. V. & Sarma, S. D. Wigner supersolid of excitons in electron-hole bilayers. Phys. Rev. B 74, 233302 (2006).
Zarenia, M., Neilson, D. & Peeters, F. M. Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: charge density waves and coupled Wigner crystals. Sci. Rep. 7, 11510 (2017).
De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).
Chen, X. M. & Quinn, J. J. Excitonic charge-density-wave instability of spatially separated electron-hole layers in strong magnetic fields. Phys. Rev. Lett. 67, 895–898 (1991).
Yang, K. Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum Hall systems at ν = 1. Phys. Rev. Lett. 87, 056802 (2001).
Conti, S. et al. Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023).
Böning, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 075130 (2011).
Szymański, J., Świerkowski, L. & Neilson, D. Correlations in coupled layers of electrons and holes. Phys. Rev. B 50, 11002–11007 (1994).
Astrakharchik, G. E., Boronat, J., Kurbakov, I. L. & Lozovik, Y. E. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007).
Nguyen, R. Q. et al. Bilayer excitons in the Laughlin fractional quantum Hall state. Preprint at https://doi.org/10.48550/arXiv.2410.24208 (2024).
Lozovik, Y. E., Ogarkov, S. L. & Sokolik, A. A. Condensation of electron-hole pairs in a two-layer graphene system: correlation effects. Phys. Rev. B 86, 045429 (2012).
Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).
Lozovik, Y. E., Volkov, S. Y. & Willander, M. Structural properties of the condensate in two-dimensional mesoscopic systems of strongly correlated excitons. JETP Lett. 79, 473–478 (2004).
Mitra, K., Williams, C. J. & Sá de Melo, C. A. R. Hexatic, Wigner crystal, and superfluid phases of dipolar bosons. Preprint at https://doi.org/10.48550/arXiv.0903.4655 (2009).
Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).
Zeng, Y. et al. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023).
Abergel, D. S. L., Rodriguez-Vega, M., Rossi, E. & Das Sarma, S. Interlayer excitonic superfluidity in graphene. Phys. Rev. B 88, 235402 (2013).
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).
Kellogg, M. J. Evidence for Excitonic Superfluidity in a Bilayer Two-Dimensional Electron System. PhD thesis, California Institute of Technology (2005).
Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).
Wiersma, R. D. et al. Activated transport in the separate layers that form the νT = 1 exciton condensate. Phys. Rev. Lett. 93, 266805 (2004).
Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).
Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).
Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).
Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).
Champagne, A. R., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Charge imbalance and bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 205310 (2008).
Clarke, W. R. et al. Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance. Phys. Rev. B 71, 081304 (2005).
Joglekar, Y. N. & MacDonald, A. H. Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets. Phys. Rev. B 65, 235319 (2002).
Andrei, E. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).
Jiang, H. W. et al. Quantum liquid versus electron solid around ν = 1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).
Ma, M. K. et al. Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid. Phys. Rev. Lett. 125, 036601 (2020).
Gervais, G. et al. Competition between a fractional quantum Hall liquid and bubble and Wigner crystal phases in the third Landau level. Phys. Rev. Lett. 93, 266804 (2004).
Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimensional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).
Tsui, Y.-C. et al. Direct observation of a magnetic-field-induced Wigner crystal. Nature 628, 287–292 (2024).
Hatke, A. T. et al. Wigner solid pinning modes tuned by fractional quantum Hall states of a nearby layer. Sci. Adv. 5, eaao2848 (2019).

