Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1513â1766 https://doi.org/10.1017/9781009157896.013 (Cambridge Univ. Press, 2021).
Almazroui, M. et al. Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Syst. Environ. 5, 481â497 (2021).
Orlowsky, B. & Seneviratne, S. I. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 17, 1765â1781 (2013).
Lu, J., Carbone, G. J. & Grego, J. M. Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Sci. Rep. 9, 4922 (2019).
Vatter, J., Wagnitz, P., Schmiester J. & Hernandez, E. Drought Risk: The Global Thirst for Water in the Era of Climate Crisis (WWF Germany, 2019).
United Nations Office for Disaster Risk Reduction. Special Report on Drought 2021 (United Nations, 2021).
World Meteorological Organization. State of the Global Climate 2021 https://library.wmo.int/doc_num.php?explnum_id=11178 (WMO, 2022).
Yang, T., Ding, J., Liu, D., Wang, X. & Wang, T. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737â748 (2019).
Stephens, G. L. et al. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 115, https://doi.org/10.1029/2010JD014532 (2010).
Bastin, S. et al. Impact of humidity biases on light precipitation occurrence: observations versus simulations. Atmos. Chem. Phys. 19, 1471â1490 (2019).
Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often will it rain? J. Clim. 20, 4801â4818 (2007).
Nasrollahi, N. et al. How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res. 51, 2847â2864 (2015).
Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205â1218 (2003).
Vogel, M. M., Zscheischler, J. & Seneviratne, S. I. Varying soil moistureâatmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe. Earth Syst. Dyn. 9, 1107â1125 (2018).
Hirota, N., Michibata, T., Shiogama, H., Ogura, T. & Suzuki, K. Impacts of precipitation modeling on cloud feedback in MIROC6. Geophys. Res. Lett. 49, e2021GL096523 (2022).
Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 6, 28334 (2016).
Herrera-Estrada, J. E., Satoh, Y. & Sheffield, J. Spatiotemporal dynamics of global drought. Geophys. Res. Lett. https://doi.org/10.1002/2016GL071768 (2017).
Topál, D., Hatvani, I. G. & Kern, Z. Refining projected multidecadal hydroclimate uncertainty in East-Central Europe using CMIP5 and single-model large ensemble simulations. Theor. Appl. Climatol. 142, 1147â1167 (2020).
Zhang, S. & Chen, J. Uncertainty in projection of climate extremes: a comparison of CMIP5 and CMIP6. J. Meteorol. Res. 35, 646â662 (2021).
Maraun, D. et al. Towards process-informed bias correction of climate change simulations. Nat. Clim. Change 7, 764â773 (2017).
Kreibich, H. et al. The challenge of unprecedented floods and droughts in risk management. Nature 608, 80â86 (2022).
Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1â15 (2020).
Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269â278 (2019).
Taylor, I. H. et al. Contributions to uncertainty in projections of future drought under climate change scenarios. Hydrol. Earth Syst. Sci. Discuss. 9, 12613â12653 (2012).
Hausfather, Z. & Peters, G. P. Emissions â the âbusiness as usualâ story is misleading. Nature 577, 618â620 (2020).
Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, https://doi.org/10.1029/2020GL087820 (2020).
Wainwright, C. M., Allan, R. P. & Black, E. Consistent trends in dry spell length in recent observations and future projections. Geophys. Res. Lett. 49, https://doi.org/10.1029/2021GL097231 (2022).
Li, J., Huo, R., Chen, H., Zhao, Y. & Zhao, T. Comparative assessment and future prediction using CMIP6 and CMIP5 for annual precipitation and extreme precipitation simulation. Front. Earth Sci. 9, https://doi.org/10.3389/feart.2021.687976 (2021).
Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J. & Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 29, https://doi.org/10.1016/j.wace.2020.100269 (2020).
Funk, C. et al. Exploring trends in wet-season precipitation and drought indices in wet, humid and dry regions. Environ. Res. Lett. 14, 115002 (2019).
Chen, D., Dai, A. & Hall, A. The convective-to-total precipitation ratio and the âdrizzlingâ bias in climate models. J. Geophys. Res. Atmos. 126, https://doi.org/10.1029/2020JD034198 (2021).
Simpson, I. R. et al. Observed humidity trends in dry regions contradict climate models. Proc. Natl Acad. Sci. USA 121, e2302480120 (2024).
Cox, P. M. et al. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78, 137â156 (2004).
Monteverde, C., De Sales, F. & Jones, C. Evaluation of the CMIP6 performance in simulating precipitation in the Amazon river basin. Climate 10, https://doi.org/10.3390/cli10080122 (2022).
Baker, J. C. A. et al. Robust Amazon precipitation projections in climate models that capture realistic landâatmosphere interactions. Environ. Res. Lett. 16, 074002 (2021).
Tierney, J. E., Ummenhofer, C. C. & deMenocal, P. B. Past and future rainfall in the Horn of Africa. Sci. Adv. 1, e1500682 (2015).
Baxter, A. J. et al. Reversed Holocene temperatureâmoisture relationship in the Horn of Africa. Nature 620, 336â343 (2023).
Selten, F. M., Bintanja, R., Vautard, R. & van den Hurk, B. J. J. M. Future continental summer warming constrained by the present-day seasonal cycle of surface hydrology. Sci. Rep. 10, 4721 (2020).
Hirabayashi, Y., Tanoue, M., Sasaki, O., Zhou, X. & Yamazaki, D. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 11, 3740 (2021).
You, Q. et al. Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C. NPJ Clim. Atmos. Sci. 5, 80 (2022).
Wang, Z., Duan, A., Yang, S. & Ullah, K. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 614â630 (2017).
Dong, T. & Dong, W. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim. Dyn. 57, 1751â1769 (2021).
Zhang, R., Chu, Q., Zuo, Z. & Qi, Y. Summertime moisture sources and transportation pathways for China and associated atmospheric circulation patterns. Front. Earth Sci. 9, https://doi.org/10.3389/feart.2021.756943 (2021).
Donat, M. G., Pitman, A. J. & Angélil, O. Understanding and reducing future uncertainty in midlatitude daily heat extremes via land surface feedback constraints. Geophys. Res. Lett. 45, 10,627â10,636 (2018).
Terai, C., Caldwell, P. & Klein, S. Why do climate models drizzle too much and what impact does this have? In AGU Fall Meeting Proceedings https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/162370 (2016).
Herrera-Estrada, J. E. & Sheffield, J. Uncertainties in future projections of summer droughts and heat waves over the contiguous United States. J. Clim. 30, 6225â6246 (2017).
Wainwright, C. M. et al. âEastern African paradoxâ rainfall decline due to shorter not less intense long rains. NPJ Clim. Atmos. Sci. 2, 34 (2019).
Douville, H., Chadwick, R., Saint-Lu, M. & Medeiros, B. Drivers of dry day sensitivity to increased CO2. Geophys. Res. Lett. 50, https://doi.org/10.1029/2023GL103200 (2023).
Alexander, L. V. et al. Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environ. Res. Lett. 15, 055002 (2020).
Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851â870 (2011).
Zhang, X. ETCCDI climate change indices. https://etccdi.pacificclimate.org/ (2020).
Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. Atmos. https://doi.org/10.1002/jgrd.50150 (2013).
Field, C. B. et al. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Cambridge Univ. Press, 2012).
Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, https://doi.org/10.1029/2005JD006290 (2006).
Dunn, R. J. H. et al. Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 125, https://doi.org/10.1029/2019JD032263 (2020).
Roca, R. et al. FROGS: A daily 1° à 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data 11, 1017â1035 (2019).
Climpact https://climpact-sci.org/ (2012).
Python Language Reference, v.3.7 https://www.python.org (2019).
Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38â55 (2007).
Xie, P. et al. Reprocessed, bias-corrected CMORPH global high-resolution precipitation estimates from 1998. J. Hydrometeorol. 18, 1617â1641 (2017).
Bador, M. et al. Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. J. Geophys. Res. Atmos. 125, https://doi.org/10.1029/2019JD032184 (2020).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937â1958 (2016).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485â498 (2012).
Sillmann, J. ETCCDI extremes indices archive. https://climate-modelling.canada.ca/climatemodeldata/climdex/index.shtml.
Donat, M. G., Angélil, O. & Ukkola, A. M. Intensification of precipitation extremes in the worldâs humid and water-limited regions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab1c8e (2019).
Schulzweida, U. CDO User Guide (2.1.0). Zenodo https://doi.org/10.5281/zenodo.7112925 (2022).
Collins, M. et al. Quantifying future climate change. Nat. Clim. Change 2, 403â409 (2012).
Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 9, 102â110 (2019).
Caldwell, P. M. et al. Statistical significance of climate sensitivity predictors obtained by data mining. Geophys. Res. Lett. 41, 1803â1808 (2014).
CMIP6 data from WCRP. Google Cloud Catalogue. https://cloud.google.com/datasets.
Pangeo Team. PANGEO: A community platform for Big Data geoscience. https://pangeo.io/ (2018).
Petrova, I. Y. Observation-constrained projections reveal longer-than-expected dry spells. Source data. Zenodo https://doi.org/10.5281/zenodo.11636527 (2024).
Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts. Source code: emergent constraints. Zenodo https://doi.org/10.5281/zenodo.10886174 (2024).
Petrova, I. Y. Observation-constrained projections reveal longer-than-expected dry spells. Source code. Zenodo https://doi.org/10.5281/zenodo.11637360 (2024).
Socioeconomic Data and Applications Center. Gridded Population of the World (GPW), v4. https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (1995).