Friday, February 20, 2026
No menu items!
HomeNatureNucleotide signals coordinate activation and inhibition of bacterial immunity

Nucleotide signals coordinate activation and inhibition of bacterial immunity

  • Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Tal, N. et al. Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat. Microbiol. 7, 1200–1209 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hsueh, B. Y. et al. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat. Microbiol. 7, 1210–1220 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Itsko, M. & Schaaper, R. M. dGTP starvation in Escherichia coli provides new insights into the thymineless-death phenomenon. PLoS Genet. 10, e1004310 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, S. I., Kirk, S. H. & Eisenstark, A. Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annu. Rev. Microbiol. 52, 591–625 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tesson, F. et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat. Commun. 13, 2561 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nicastro, G. G., Burroughs, A. M., Iyer, L. M. & Aravind, L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res. 51, 11479–11503 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aravind, L. & Koonin, E. V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23, 469–472 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ji, X., Tang, C., Zhao, Q., Wang, W. & Xiong, Y. Structural basis of cellular dNTP regulation by SAMHD1. Proc. Natl Acad. Sci. USA 111, E4305–E4314 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vorontsov, I. I. et al. Characterization of the deoxynucleotide triphosphate triphosphohydrolase (dNTPase) activity of the EF1143 protein from Enterococcus faecalis and crystal structure of the activator-substrate complex. J. Biol. Chem. 286, 33158–33166 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Whiteley, A. T. et al. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature 567, 194–199 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cohen, D. et al. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Tan, J. M. J. et al. A DNA-gated molecular guard controls bacterial Hailong anti-phage defence. Nature 643, 794–800 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Maffei, E. et al. Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection. PLoS Biol. 19, e3001424 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lopatina, A., Tal, N. & Sorek, R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 7, 371–384 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barnes, C. O. et al. The crystal structure of dGTPase reveals the molecular basis of dGTP selectivity. Proc. Natl Acad. Sci. USA 116, 9333–9339 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mozer, T. J. & Warner, H. R. Properties of deoxynucleoside 5′-monophosphatase induced by bacteriophage T5 after infection of Escherichia coli. J. Virol. 24, 635–641 (1977).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Eriksson, S. & Berglund, O. Bacteriophage-induced ribonucleotide reductase systems. T5- and T6-specific ribonucleotide reductase and thioredoxin. Eur. J. Biochem. 46, 271–278 (1974).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Warner, H. R., Drong, R. F. & Berget, S. M. Early events after infection of Escherichia coli by bacteriophage T5. Induction of a 5′-nucleotidase activity and excretion of free bases. J. Virol. 15, 273–280 (1975).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kang, G., Taguchi, A. T., Stubbe, J. & Drennan, C. L. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 368, 424–427 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mozer, T. J., Thompson, R. B., Berget, S. M. & Warner, H. R. Isolation and characterization of a bacteriophage T5 mutant deficient in deoxynucleoside 5′-monophosphatase activity. J. Virol. 24, 642–650 (1977).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ahluwalia, D., Bienstock, R. J. & Schaaper, R. M. Novel mutator mutants of E. coli nrdAB ribonucleotide reductase: insight into allosteric regulation and control of mutation rates. DNA Repair 11, 480–487 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 612, 132–140 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Garb, J. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD+ depletion. Nat. Microbiol. 7, 1849–1856 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Burman, N. et al. A virally encoded tRNA neutralizes the PARIS antiviral defence system. Nature 634, 424–431 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Deep, A., Liang, Q., Enustun, E., Pogliano, J. & Corbett, K. D. Architecture and activation mechanism of the bacterial PARIS defence system. Nature 634, 432–439 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kibby, E. M. et al. A bacterial NLR-related protein recognizes multiple unrelated phage triggers to sense infection. Preprint at bioRxiv https://doi.org/10.1101/2024.12.17.629029 (2024).

  • Loeff, L., Walter, A., Rosalen, G. T. & Jinek, M. DNA end sensing and cleavage by the Shedu anti-phage defense system. Cell 188, 721–733.e17 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roisné-Hamelin, F., Liu, H. W., Taschner, M., Li, Y. & Gruber, S. Structural basis for plasmid restriction by SMC JET nuclease. Mol. Cell 84, 883–896.e7 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Jaskólska, M., Adams, D. W. & Blokesch, M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604, 323–329 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robins, W. P., Meader, B. T., Toska, J. & Mekalanos, J. J. DdmABC-dependent death triggered by viral palindromic DNA sequences. Cell Rep. 43, 114450 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pradhan, B. et al. Loop-extrusion-mediated plasmid DNA cleavage by the bacterial SMC Wadjet complex. Mol. Cell 85, 107–116.e5 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banh, D. V. et al. Bacterial cGAS senses a viral RNA to initiate immunity. Nature 623, 1001–1008 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Haudiquet, M. et al. Structural basis for Lamassu-based antiviral immunity and its evolution from DNA repair machinery. Proc. Natl Acad. Sci. USA 122, e2519643122 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hobbs, S. J. & Kranzusch, P. J. Nucleotide immune signaling in CBASS, Pycsar, Thoeris, and CRISPR antiphage defense. Annu. Rev. Microbiol. 78, 255–276 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Athukoralage, J. S. & White, M. F. Cyclic nucleotide signaling in phage defense and counter-defense. Annu. Rev. Virol. 9, 451–468 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Maruta, N. et al. TIR domain-associated nucleotides with functions in plant immunity and beyond. Curr. Opin. Plant Biol. 73, 102364 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Slavik, K. M. & Kranzusch, P. J. CBASS to cGAS–STING: the origins and mechanisms of nucleotide second messenger immune signaling. Annu. Rev. Virol. 10, 423–453 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sullivan, A. E. et al. The Panoptes system uses decoy cyclic nucleotides to defend against phage. Nature 647, 988–996 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Doherty, E. E. et al. A miniature CRISPR–Cas10 enzyme confers immunity by inhibitory signalling. Nature 647, 997–1004 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • LeRoux, M. & Laub, M. T. Toxin–antitoxin systems as phage defense elements. Annu. Rev. Microbiol. 76, 21–43 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kelly, A., Arrowsmith, T. J., Went, S. C. & Blower, T. R. Toxin–antitoxin systems as mediators of phage defence and the implications for abortive infection. Curr. Opin. Microbiol. 73, 102293 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhou, W. et al. Structure of the human cGAS–DNA complex reveals enhanced control of immune surveillance. Cell 174, 300–311.e11 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hobbs, S. J. et al. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 605, 522–526 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. 69, 1204–1214 (2013).

    CAS 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Purhonen, J., Banerjee, R., McDonald, A. E., Fellman, V. & Kallijärvi, J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Res. 48, e87 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Adams, K. J. et al. Skyline for small molecules: a unifying software package for quantitative metabolomics. J. Proteome Res. 19, 1447–1458 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments