Friday, August 8, 2025
No menu items!
HomeNatureNSD2 inhibitors rewire chromatin to treat lung and pancreatic cancers

NSD2 inhibitors rewire chromatin to treat lung and pancreatic cancers

  • Li, Y. et al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J. Biol. Chem. 284, 34283–34295 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Carpizo, V. et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci. Rep. 6, 32952 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengupta, D. et al. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Mol. Cell 81, 4481–4492 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lhoumaud, P. et al. NSD2 overexpression drives clustered chromatin and transcriptional changes in a subset of insulated domains. Nat. Commun. 10, 4843 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Jaffe, J. D. et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat. Genet. 45, 1386–1391 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popovic, R. et al. Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLoS Genet. 10, e1004566 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, G. et al. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 590, 504–508 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jani, K. S. et al. Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase. Proc. Natl Acad. Sci. USA 116, 8295–8300 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finogenova, K. et al. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 9, e61964 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Ahn, J. H. & Wang, G. G. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell. Mol. Life Sci. 76, 2899–2916 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husmann, D. & Gozani, O. Histone lysine methyltransferases in biology and disease. Nat. Struct. Mol. Biol. 26, 880–889 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, R. L., Swaroop, A., Troche, C. & Licht, J. D. The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer. Cold Spring Harb. Perspect. Med. 7, a026708 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergsagel, P. L. & Chesi, M. Immunocompetent mouse models of multiple myeloma. Semin. Hematol. 38, 533–546 (2024).


    Google Scholar
     

  • Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larrayoz, M. et al. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat. Med. 29, 632–645 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oyer, J. A. et al. Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia 28, 198–201 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    ADS 

    Google Scholar
     

  • Hudlebusch, H. R. et al. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors. Clin. Cancer Res. 17, 2919–2933 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Aytes, A. et al. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat. Commun. 9, 5201 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, N. et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J. Clin. Invest. 127, 1284–1302 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parolia, A. et al. NSD2 is a requisite subunit of the AR/FOXA1 neo-enhanceosome in promoting prostate tumorigenesis. Nat. Genet. 56, 2132–2143 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, S. et al. Global regulation of the histone mark H3K36me2 underlies epithelial plasticity and metastatic progression. Cancer Discov. 10, 854–871 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, B. A. et al. A histone methylation–MAPK signaling axis drives durable epithelial–mesenchymal transition in hypoxic pancreatic cancer. Cancer Res. 84, 1764–1780 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat, K. P., Umit Kaniskan, H., Jin, J. & Gozani, O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug Discov. 20, 265–286 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perurena, N., Situ, L. & Cichowski, K. Combinatorial strategies to target RAS-driven cancers. Nat. Rev. Cancer 24, 316–337 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punekar, S. R., Velcheti, V., Neel, B. G. & Wong, K. K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 19, 637–655 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popow, J. et al. Targeting cancer with small-molecule pan-KRAS degraders. Science 385, 1338–1347 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat. Med. 28, 2171–2182 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Oya, Y., Imaizumi, K. & Mitsudomi, T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 194, 107886 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Xue, J. Y. et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421–425 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhave, N. S., Biter, A. B. & Hong, D. S. Mechanisms of resistance to KRAS-targeted therapy. Cancer Discov. 11, 1345–1352 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francis, J. W. et al. FAM86A methylation of eEF2 links mRNA translation elongation to tumorigenesis. Mol. Cell 84, 1753–1763 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Deng, H. et al. Piperidinyl-methyl-purine amines as NSD2 inhibitors and anti-cancer agents. WIPO patent WO2021028854A1 (2021).

  • Le, K. et al. Heterocyclesas modulators of NSD activity. WIPO patent WO2024073282 (2024).

  • Li, W. et al. Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature 590, 498–503 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, K. et al. Structural basis of the regulation of the normal and oncogenic methylation of nucleosomal histone H3 Lys36 by NSD2. Nat. Commun. 12, 6605 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shipman, G. A. et al. Systematic perturbations of SETD2, NSD1, NSD2, NSD3, and ASH1L reveal their distinct contributions to H3K36 methylation. Genome Biol. 25, 263 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Discovery of LLC0424 as a potent and selective in vivo NSD2 PROTAC degrader. J. Med. Chem. 67, 6938–6951 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LegaardAndersson, J. et al. Discovery of NSD2-degraders from novel and selective DEL hits. ChemBioChem 24, e202300515 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Meng, F. et al. Discovery of a first-in-class degrader for nuclear receptor binding SET domain protein 2 (NSD2) and ikaros/aiolos. J. Med. Chem. 65, 10611–10625 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie, D. Y. et al. Recruitment of FBXO22 for targeted degradation of NSD2. Nat. Chem. Biol. 20, 1597–1607 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hanley, R. P. et al. Discovery of a potent and selective targeted NSD2 degrader for the reduction of H3K36me2. J. Am. Chem. Soc. 145, 8176–8188 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ponnaluri, V. K. C. et al. NicE-seq: high resolution open chromatin profiling. Genome Biol. 18, 122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso-Curbelo, D. et al. A gene–environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grutzmann, R. et al. Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes. Oncogene 24, 5079–5088 (2005).

    PubMed 

    Google Scholar
     

  • Sun, Z. et al. Chromatin regulation of transcriptional enhancers and cell fate by the Sotos syndrome gene NSD1. Mol. Cell 83, 2398–2416 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janne, P. A. et al. Adagrasib in non-Small-cell lung cancer harboring a KRASG12C mutation. N. Engl. J. Med. 387, 120–131 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ianevski, A., Giri, A. K. & Aittokallio, T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 50, W739–W743 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, J. et al. Discovery of a highly potent and selective inhibitor targeting protein lysine methyltransferase NSD2. J. Med. Chem. 67, 16056–16071 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Bon, C., Halby, L. & Arimondo, P. B. Bisubstrate inhibitors: the promise of a selective and potent chemical inhibition of epigenetic ‘writers’. Epigenomics 12, 1479–1482 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat. Commun. 6, 6604 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Vito, C. et al. A TARBP2-dependent miRNA expression profile underlies cancer stem cell properties and provides candidate therapeutic reagents in Ewing sarcoma. Cancer Cell 21, 807–821 (2012).

    PubMed 

    Google Scholar
     

  • Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mureddu, L. & Vuister, G. W. Simple high-resolution NMR spectroscopy as a tool in molecular biology. FEBS J. 286, 2035–2042 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honorato, R. V. et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 19, 3219–3241 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Shukla, S. et al. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nat. Chem. Biol. 17, 784–793 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tisi, D. et al. Structure of the epigenetic oncogene MMSET and inhibition by N-alkyl sinefungin derivatives. ACS Chem. Biol. 11, 3093–3105 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuttelkopf, A. W. & van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Sidoli, S., Bhanu, N. V., Karch, K. R., Wang, X. & Garcia, B. A. Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: from histone extraction to data analysis. J. Vis. Exp. 111, 54112 (2016).


    Google Scholar
     

  • Bhanu, N. V., Sidoli, S. & Garcia, B. A. A workflow for ultra-rapid analysis of histone post-translational modifications with direct-injection mass spectrometry. Bio. Protoc. 10, e3756 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Z. F. et al. EpiProfile quantifies histone peptides with modifications by extracting retention time and intensity in high-resolution mass spectra. Mol. Cell. Proteomics 14, 1696–1707 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marunde, M. R. et al. Nucleosome conformation dictates the histone code. eLife 13, e78866 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yusufova, N. et al. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589, 299–305 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, R. N. et al. Examining the roles of H3K4 methylation states with systematically characterized antibodies. Mol. Cell 72, 162–177 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vishnu, U. S., Esteve, P. O., Chin, H. G. & Pradhan, S. One-pot universal NicE-seq: all enzymatic downstream processing of 4% formaldehyde crosslinked cells for chromatin accessibility genomics. Epigenetics Chromatin 14, 53 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curras-Alonso, S. et al. An interactive murine single-cell atlas of the lung responses to radiation injury. Nat. Commun. 14, 2445 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korotkevich, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2019).

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database 2017, bax028 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 3 (2011).


    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orlando, D. A. et al. Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep. 9, 1163–1170 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham, F. et al. Ensembl 2015. Nucleic Acids Res. 43, D662–D669 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic datasets. Bioinformatics 37, 422–423 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Kawaguchi, Y. et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat. Genet. 32, 128–134 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Baranczewski, P. et al. Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol. Rep. 58, 453–472 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. SMYD5 methylation of rpL40 links ribosomal output to gastric cancer. Nature 632, 656–663 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X., Lofgren, S. M., Zhao, Y. & Mazur, P. K. Multiplexed transcriptomic profiling of the fate of human CAR T cells in vivo via genetic barcoding with shielded small nucleotides. Nat. Biomed. Eng. 7, 1170–1187 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52, 183–199 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments