Buttrick, N. R. & Oishi, S. The psychological consequences of income inequality. Soc. Pers. Psychol. Compass 11, e12304 (2017).
Wilkinson, R. G. & Pickett, K. E. The enemy between us: the psychological and social costs of inequality. Eur. J. Soc. Psychol. 47, 11–24 (2017).
Rodríguez-Bailón, R., Sánchez-Rodríguez, Á, García-Sánchez, E., Petkanopoulou, K. & Willis, G. B. Inequality is in the air: contextual psychosocial effects of power and social class. Curr. Opin. Psychol. 33, 120–125 (2020).
Wienk, M. N., Buttrick, N. R. & Oishi, S. The social psychology of economic inequality, redistribution, and subjective well-being. Eur. Rev. Soc. Psychol. 33, 45–80 (2022).
Carr, P. ‘How the other half lives’?: taking a critical approach to the social psychology of economic inequality and extreme wealth. Soc. Pers. Psychol. Compass 17, e12743 (2023).
Fusar-Poli, P. et al. Preventive psychiatry: a blueprint for improving the mental health of young people. World Psychiatry 20, 200–221 (2021).
Heinz, A., Zhao, X. & Liu, S. Implications of the association of social exclusion with mental health. JAMA Psychiatry 77, 113–114 (2020).
Herrman, H. et al. Time for united action on depression: a Lancet–World Psychiatric Association Commission. Lancet 399, 957–1022 (2022).
Lengfelder, C. Exploring Dynamics of Inequality in Human Development. Background Paper No. 3-2019 (United Nations Development Programme, 2019).
Occhipinti, J. A. et al. The influence of economic policies on social environments and mental health. Bull. World Health Organ. 102, 323–329 (2024).
Saunders, P. & Evans, N. Beware False Prophets (Centre for Independent Studies, 2011).
Snowdon, C. The Spirit Level Delusion: Fact-checking the Left’s New Theory of Everything. (Little Dice, 2010).
Pinker, S. Enlightenment Now: The Case for Reason, Science, Humanism, and Progress (Penguin UK, 2018).
Hirschman, A. O. & Rothschild, M. The changing tolerance for income inequality in the course of economic development. Q. J. Econ. 87, 544–566 (1973).
Cheung, F. Can income inequality be associated with positive outcomes? Hope mediates the positive inequality–happiness link in rural China. Soc. Psychol. Pers. Sci. 7, 320–330 (2016).
Sommet, N. & Elliot, A. J. A competitiveness-based theoretical framework to study the psychology of income inequality. Curr. Dir. Psychol. Sci. 32, 318–327 (2023).
Rodgers, M. A. & Pustejovsky, J. E. Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes. Psychol. Methods 26, 141–160 (2020).
Voracek, M., Kossmeier, M. & Tran, U. S. Which data to meta-analyze, and how?. Z. Psychol. 227, 64–82 (2019).
Van Lissa, C. J. in Small sample size solutions. A Guide for Applied Researchers and Practitioners (eds van de Schoot, R. & Miočević, M) 186–202 (Routledge, 2020).
Atkinson, A. B. On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970).
Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2022 (Harvard Univ. Press, 2022).
United Nations. Inequality—Bridging the Divide (United Nations, 2020).
Yang, Y. & Konrath, S. A systematic review and meta-analysis of the relationship between economic inequality and prosocial behaviour. Nat. Hum. Behav. 7, 1899–1916 (2023).
Shimonovich, M. et al. Causal assessment of income inequality on self-rated health and all-cause mortality: a systematic review and meta-analysis. Milbank Q. 102, 141–182 (2024).
Pazzona, M. Revisiting the income inequality–crime puzzle. World Dev. 176, 106520 (2024).
Wilkinson, R. & Pickett, K. The Spirit Level: Why Equality is Better for Everyone (Penguin UK, 2010).
Kawachi, I. & Kennedy, B. P. The Health of Nations: Why Inequality is Harmful to Your Health (New Press, 2006).
Alesina, A., Di Tella, R. & MacCulloch, R. Inequality and happiness: are Europeans and Americans different? J. Pub. Econ. 88, 2009–2042 (2004).
Layte, R. The association between income inequality and mental health: testing status anxiety, social capital, and neo-materialist explanations. Eur. Sociol. Rev. 28, 498–511 (2012).
Abdel-Khalek, A. M. Measuring happiness with a single-item scale. Soc. Behav. Pers. 34, 139–150 (2006).
Oishi, S., Kesebir, S. & Diener, E. Income inequality and happiness. Psychol. Sci. 22, 1095–1100 (2011).
Napier, J. L. & Jost, J. T. Why are conservatives happier than liberals? Psychol. Sci. 19, 565–572 (2008).
Diener, E., Diener, M. & Diener, C. Factors predicting the subjective well-being of nations. J. Pers. Soc. Psychol. 69, 851–864 (1995).
Wilkinson, R. Comment: income, inequality, and social cohesion. Am. J. Public Health 87, 1504–1506 (1997).
Peters, K. et al. The language of inequality: evidence economic inequality increases wealth category. Pers. Soc. Psychol. Bull. 48, 1204–1219 (2022).
Kim, Y. & Sommet, N. Income is a stronger predictor of subjective social class in more economically unequal places. Pers. Soc. Psychol. Bull. 51, 1173–1186 (2025).
Sommet, N., Elliot, A. J., Jamieson, J. P. & Butera, F. Income inequality, perceived competitiveness, and approach-avoidance motivation. J. Pers. 87, 767–784 (2019).
Sánchez-Rodríguez, Á, Willis, G. B., Jetten, J. & Rodríguez-Bailón, R. Economic inequality enhances inferences that the normative climate is individualistic and competitive. Eur. J. Soc. Psychol. 49, 1114–1127 (2019).
Davidai, S. Economic inequality fosters the belief that success is zero-sum. Pers. Soc. Psychol. Bull. 51, 1030–1046 (2023).
Murayama, K. & Elliot, A. J. The competition–performance relation: a meta-analytic review and test of the opposing processes model of competition and performance. Psychol. Bull. 138, 1035–1070 (2012).
Sommet, N. & Elliot, A. J. The effects of US county and state income inequality on self-reported happiness and health are equivalent to zero. Qual. Life Res. 31, 1999–2009 (2022).
Burns, J. K., Tomita, A. & Kapadia, A. S. Income inequality and schizophrenia: increased schizophrenia incidence in countries with high levels of income inequality. Int. J. Soc. Psychiatry 60, 185–196 (2014).
Tibber, M. S., Walji, F., Kirkbride, J. B. & Huddy, V. The association between income inequality and adult mental health at the subnational level—a systematic review. Soc. Psychiatry Psychiatr. Epidemiol. 57, 1–24 (2022).
Ngamaba, K. H., Panagioti, M. & Armitage, C. J. Income inequality and subjective well-being: a systematic review and meta-analysis. Qual. Life Res. 27, 577–596 (2018).
Patel, V. et al. Income inequality and depression: a systematic review and meta-analysis of the association and a scoping review of mechanisms. World Psychiatry 17, 76–89 (2018).
Ribeiro, W. S. et al. Income inequality and mental illness-related morbidity and resilience: a systematic review and meta-analysis. Lancet Psychiatry 4, 554–562 (2017).
Wilkinson, R. & Pickett, K. Inequality and mental illness. Lancet Psychiatry 4, 512–513 (2017).
Vergés, A. In Etiopathogenic Theories and Models in Depression (eds Jiménez, J. P. et al.) 223–241 (Springer, 2021).
Guolo, A. & Varin, C. Random-effects meta-analysis: the number of studies matters. Stat. Methods Med. Res. 26, 1500–1518 (2017).
Metelli, S. & Chaimani, A. Challenges in meta-analyses with observational studies. BMJ Mental Health 23, 83–87 (2020).
Sterne, J. A. C., Gavaghan, D. & Egger, M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J. Clin. Epidemiol. 53, 1119–1129 (2000).
Kenny, D. A. & Judd, C. M. The unappreciated heterogeneity of effect sizes: implications for power, precision, planning of research, and replication. Psychol. Methods 24, 578–589 (2019).
Moreau, D. & Gamble, B. Conducting a meta-analysis in the age of open science: tools, tips, and practical recommendations. Psychol. Methods 27, 426–432 (2022).
Oishi, S., Cha, Y., Komiya, A. & Ono, H. Money and happiness: the income–happiness correlation is higher when income inequality is higher. PNAS Nexus 1, pgac224 (2022).
Bor, J., Cohen, G. H. & Galea, S. Population health in an era of rising income inequality: USA, 1980–2015. Lancet 389, 1475–1490 (2017).
Gravelle, H. How much of the relation between population mortality and unequal distribution of income is a statistical artefact? BMJ 316, 382–385 (1998).
Shimonovich, M., Pearce, A., Thomson, H., McCartney, G. & Katikireddi, S. V. Assessing the causal relationship between income inequality and mortality and self-rated health: protocol for systematic review and meta-analysis. Syst. Rev. 11, 20 (2022).
Kondo, N. et al. Income inequality, mortality, and self rated health: meta-analysis of multilevel studies. BMJ 339, b4471 (2009).
Duncan, D. & Sabirianova Peter, K. Unequal inequalities: do progressive taxes reduce income inequality?. Int. Tax Public Finan. 23, 762–783 (2016).
Murad, M. H., Wang, Z., Chu, H. & Lin, L. When continuous outcomes are measured using different scales: guide for meta-analysis and interpretation. BMJ 364, k4817 (2019).
Carpenter, C. J. Meta-analyzing apples and oranges: how to make applesauce instead of fruit salad. Hum. Commun. Res. 46, 322–333 (2019).
Schröder, M. Income inequality and life satisfaction: unrelated between countries, associated within countries over time. J. Happiness Stud. 19, 1021–1043 (2018).
Johnston, C. D. & Newman, B. J. Economic inequality and US public policy mood across space and time. Am. Politics Res. 44, 164–191 (2016).
De Maio, F. G. Income inequality measures. J. Epidemiol. Community Health 61, 849–852 (2007).
Stanley, T. D., Carter, E. C. & Doucouliagos, H. What meta-analyses reveal about the replicability of psychological research. Psychol. Bull. 144, 1325–1346 (2018).
IntHout, J., Ioannidis, J. P., Borm, G. F. & Goeman, J. J. Small studies are more heterogeneous than large ones: a meta-meta-analysis. J. Clin. Epidemiol. 68, 860–869 (2015).
Igelström, E., Campbell, M., Craig, P. & Katikireddi, S. V. Cochrane’s risk of bias tool for non-randomized studies (ROBINS-I) is frequently misapplied: a methodological systematic review. J. Clin. Epidemiol. 140, 22–32 (2021).
Onofrio, B. M., Sjölander, A., Lahey, B. B., Lichtenstein, P. & Öberg, A. S. Accounting for confounding in observational studies. Annu. Rev. Clin. Psychol. 16, 25–48 (2020).
Lynch, J. W., Smith, G. D., Kaplan, G. A. & House, J. S. Income inequality and mortality: importance to health of individual income, psychosocial environment, or material conditions. BMJ 320, 1200–1204 (2000).
Jachimowicz, J. M. et al. Higher economic inequality intensifies the financial hardship of people living in poverty by fraying the community buffer. Nat. Hum. Behav. 4, 702–712 (2020).
Cheung, F. & Lucas, R. E. Income inequality is associated with stronger social comparison effects: the effect of relative income on life satisfaction. J. Pers. Soc. Psychol. 110, 332–441 (2016).
Louie, P., Wu, C., Shahidi, F. V. & Siddiqi, A. Inflation hardship, gender, and mental health. SSM Popul. Health 23, 101452 (2023).
Schünemann, H. J. et al. in Cochrane Handbook for Systematic Reviews of Interventions (eds J. P. T. Higgins et al.) 375–402 (John Wiley & Sons, 2019).
Zeng, L. et al. GRADE guidelines 32: GRADE offers guidance on choosing targets of GRADE certainty of evidence ratings. J. Clin. Epidemiol. 137, 163–175 (2021).
Higgins, J. P. T. et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). Environ. Int. 186, 108602 (2024).
Cheng, H. G. & Phillips, M. R. Secondary analysis of existing data: opportunities and implementation. Shanghai Arch. Psychiatry 26, 371–375 (2014).
Lloyd’s Register Foundation. Lloyd’s Register Foundation World Risk Poll Methodology (Lloyd’s Register Foundation, 2021).
Lustig, N. The “Missing Rich” in Household Surveys: Causes and Correction Approaches. Working Paper Series 75 (ECINEQ, 2020).
Davidai, S., Goya-Tocchetto, D. & Lawson, M. A. Economic segregation is associated with reduced concerns about economic inequality. Nat. Commun. 15, 5655 (2024).
Willis, G. B., García-Sánchez, E., Sánchez-Rodríguez, Á, García-Castro, J. D. & Rodríguez-Bailón, R. The psychosocial effects of economic inequality depend on its perception. Nat. Rev. Psychol. 1, 301–309 (2022).
Metz, N. & Burdina, M. Neighbourhood income inequality and property crime. Urban Stud. 55, 133–150 (2018).
Mamunuru, S. M., Shrivastava, A. & Jayadev, A. Social networks and experienced inequality. J. Econ. Behav. Org. 229, 106799 (2025).
Blesch, K., Hauser, O. P. & Jachimowicz, J. M. Measuring inequality beyond the Gini coefficient may clarify conflicting findings. Nat. Hum. Behav. 6, 1525–1536 (2022).
Starmans, C., Sheskin, M. & Bloom, P. Why people prefer unequal societies. Nat. Hum. Behav. 1, 0082 (2017).
Sareen, J., Afifi, T. O., McMillan, K. A. & Asmundson, G. J. Relationship between household income and mental disorders: findings from a population-based longitudinal study. Arch. Gen. Psychiatry 68, 419–427 (2011).
Thomson, R. M. et al. How do income changes impact on mental health and wellbeing for working-age adults? A systematic review and meta-analysis. Lancet Public Health 7, e515–e528 (2022).
Ridley, M., Rao, G., Schilbach, F. & Patel, V. Poverty, depression, and anxiety: causal evidence and mechanisms. Science 370, eaay0214 (2020).
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).
Higgins, J. P. et al. Cochrane Handbook for Systematic Reviews of Interventions (John Wiley & Sons, 2019).
Lakens, D., Hilgard, J. & Staaks, J. On the reproducibility of meta-analyses: six practical recommendations. BMC Psychol. 4, 24 (2016).
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).
Morgan, R. L., Whaley, P., Thayer, K. A. & Schünemann, H. J. Identifying the PECO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ. Int. 121, 1027–1031 (2018).
Nishi, A., Shirado, H., Rand, D. G. & Christakis, N. A. Inequality and visibility of wealth in experimental social networks. Nature 526, 426–429 (2015).
Gao, L., Sun, B., Du, Z. & Lv, G. How wealth inequality affects happiness: the perspective of social comparison. Front. Psychol. 13, 829707 (2022).
Proctor, C. in Encyclopedia of Quality of Life and Well-Being Research (ed. Michalos, A. C.) 6437–6441 (Springer, 2014).
Sorochan, J. & O’Neill, M. in Encyclopedia of Quality of Life and Well-Being Research (ed. Michalos, A. C.) 3995–3998 (Springer, 2014).
NCBI. Mental Disorders 2021. National Library of Medicine https://www.ncbi.nlm.nih.gov/mesh/68001523 (accessed April 2021).
Diez Roux, A. V. A glossary for multilevel analysis. J. Epidemiol. Community Health 56, 588 (2002).
Inist-CNRS. OpenGrey. DANS https://doi.org/10.17026/dans-xtf-47w5 (2021).
Kim, S.-W. & Gil, J.-M. Research paper classification systems based on TF-IDF and LDA schemes. Hum.-centric Comput. Inf. Sci. 9, 30 (2019).
Belur, J., Tompson, L., Thornton, A. & Simon, M. Interrater reliability in systematic review methodology: exploring variation in coder decision-making. Sociol. Methods Res. 50, 837–865 (2021).
Topuz, S. G. The relationship between income inequality and economic growth: are transmission channels effective? Soc. Indic. Res. 162, 1177–1231 (2022).
Buttrick, N. R., Heintzelman, S. J. & Oishi, S. Inequality and well-being. Curr. Opin. Psychol. 18, 15–20 (2017).
Helliwell, J. F., Huang, H. & Wang, S. in World Happiness Report Vol. 2 (eds Helliwell, J. F. et al.) 11–46 (Sustainable Development Solutions Network, 2019).
Rohrer, J. M. Thinking clearly about correlations and causation: graphical causal models for observational data. Adv. Methods Pract. Psychol. Sci. 1, 27–42 (2018).
Mdingi, K. & Ho, S.-Y. Literature review on income inequality and economic growth. MethodsX 8, 101402 (2021).
Solt, F. Measuring income inequality across countries and over time: the standardized world income inequality database. Soc. Sci. Q. 101, 1183–1199 (2020).
Kawachi, I. & Kennedy, B. P. The relationship of income inequality to mortality: does the choice of indicator matter? Soc. Sci. Med. 45, 1121–1127 (1997).
Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 1, 97–111 (2010).
Van den Noortgate, W., López-López, J. A., Marín-Martínez, F. & Sánchez-Meca, J. Meta-analysis of multiple outcomes: a multilevel approach. Behav. Res. Methods 47, 1274–1294 (2015).
Fernández-Castilla, B. et al. A demonstration and evaluation of the use of cross-classified random-effects models for meta-analysis. Behav. Res. Methods 51, 1286–1304 (2019).
Cheung, M. W. A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol. Rev. 29, 387–396 (2019).
Hansen, C., Steinmetz, H. & Block, J. How to conduct a meta-analysis in eight steps: a practical guide. Manag. Rev. Q. 72, 1–19 (2022).
Viechtbauer, W. & Cheung, M. W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125 (2010).
Cook, R. D. & Weisberg, S. Residuals and Influence in Regression (Chapman and Hall, 1982).
Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. Applied Linear Statistical Models 4th edn (Irwin, 1996).
Sheather, S. A Modern Approach to Regression with R (Springer Science & Business Media, 2009).
Altman, N. & Krzywinski, M. Analyzing outliers: influential or nuisance? Nat. Methods 13, 281–282 (2016).
Rogers, J. L., Howard, K. I. & Vessey, J. T. Using significance tests to evaluate equivalence between two experimental groups. Psychol. Bull. 113, 553–565 (1993).
Rosenthal, J. A. Qualitative descriptors of strength of association and effect size. J. Soc. Serv. Res. 21, 37–59 (1996).
Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. 1, 259–269 (2018).
Harrer, M., Cuijpers, P., Furukawa, T. A. & Ebert, D. D. Doing Meta-Analysis with R: A Hands-On Guide 1st edn (Chapman & Hall/CRC, 2021).
Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Res. Synth. Methods 2, 61–76 (2011).
Joanna, I., John, P. A. I., Maroeska, M. R. & Jelle, J. G. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 6, e010247 (2016).
Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).
Langan, D., Higgins, J. P. T., Gregory, W. & Sutton, A. J. Graphical augmentations to the funnel plot assess the impact of additional evidence on a meta-analysis. J. Clin. Epidemiol. 65, 511–519 (2012).
Palmer, T. M., Sutton, A. J., Peters, J. L. & Moreno, S. G. Contour-enhanced funnel plots for meta-analysis. Stata J. 8, 242–254 (2008).
Kossmeier, M., Tran, U. S. & Voracek, M. Visualizing meta-analytic data with R package metaviz. R package version 0.3.1 (2020).
Stanley, T. D. & Doucouliagos, H. Meta-regression approximations to reduce publication selection bias. Res. Synth. Methods 5, 60–78 (2014).
Henmi, M. & Copas, J. B. Confidence intervals for random effects meta-analysis and robustness to publication bias. Stat. Med. 29, 2969–2983 (2010).
Iyengar, S. & Greenhouse, J. B. Selection models and the file drawer problem. Stat. Sci. 3, 109–117 (1988).
Carter, E. C., Schönbrodt, F. D., Gervais, W. M. & Hilgard, J. Correcting for bias in psychology: a comparison of meta-analytic methods. Adv. Methods Pract. Psychol. Sci. 2, 115–144 (2019).
Vevea, J. L. & Hedges, L. V. A general linear model for estimating effect size in the presence of publication bias. Psychometrika 60, 419–435 (1995).
Coburn, K. M. & Vevea, J. L. Estimating weight-function models for publication bias (version 2.0.2). https://CRAN.R-project.org/package=weightr (2012).
Coburn, K. M. & Vevea, J. L. Publication bias as a function of study characteristics. Psychol. Methods 20, 310–330 (2015).
Simonsohn, U., Nelson, L. D. & Simmons, J. P. P-curve: a key to the file-drawer. J. Exp. Psychol. 143, 534–547 (2014).
Bishop, D. V. M. & Thompson, P. A. Problems in using p-curve analysis and text-mining to detect rate of p-hacking and evidential value. PeerJ 4, e1715 (2016).
Brunner, J. & Schimmack, U. Estimating population mean power under conditions of heterogeneity and selection for significance. Meta-Psychology https://doi.org/10.15626/MP.2018.874 (2020).
van Aert, R. C. M., Wicherts, J. M. & van Assen, M. A. L. M. Conducting meta-analyses based on p values: reservations and recommendations for applying p-uniform and p-curve. Persp. Psychol. Sci. 11, 713–729 (2016).
Bartoš, F. & Schimmack, U. Z-curve 2.0: estimating replication rates and discovery rates. Meta-Psychology https://doi.org/10.15626/MP.2021.2720 (2022).
Simonsohn, U., Simmons, J. P. & Nelson, L. D. Specification curve analysis. Nat. Hum. Behav. 4, 1208–1214 (2020).
Moeyaert, M. et al. Methods for dealing with multiple outcomes in meta-analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int. J. Soc. Res. Method. 20, 559–572 (2017).
Gleser, L. J. & Olkin, I. in The Handbook of Research Synthesis (eds Cooper, H. & Hedges, L. V.) 339–355 (Russell Sage Foundation, 1994).
De Dominicis, L., Florax, R. J. G. M. & De Groot, H. L. F. A meta-analysis on the relationship between income inequality and economic growth. Scot. J. Polit. Econ. 55, 654–682 (2008).
McNeish, D. & Kelley, K. Fixed effects models versus mixed effects models for clustered data: reviewing the approaches, disentangling the differences, and making recommendations. Psychol. Methods 24, 20–35 (2019).
Borenstein, M. & Hedges, L. V. in The Handbook of Research Synthesis and Meta-Analysis 3rd edn (eds Cooper, H., Hedges, L. V. & Valentine, J. C.) 207–244 (Russell Sage Foundation, 2019).
Pastor, D. A. & Lazowski, R. A. On the multilevel nature of meta-analysis: a tutorial, comparison of software programs, and discussion of analytic choices. Multivar. Behav. Res. 53, 74–89 (2018).
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
Koch, J. & Leimbach, M. SSP economic growth projections: Major changes of key drivers in integrated assessment modelling. Ecol. Econ. 206, 107751 (2023).
Anyaegbu, G. Using the OECD equivalence scale in taxes and benefits analysis. Econ. Labour Mark. Rev. 4, 49–54 (2010).
Kahneman, D. & Deaton, A. High income improves evaluation of life but not emotional well-being. Proc. Natl Acad. Sci. USA 107, 16489–16493 (2010).
Gallup. Worldwide Research Methodology and Codebook (Gallup, 2021).
Turon, H. et al. Agreement between a single-item measure of anxiety and depression and the Hospital Anxiety and Depression Scale: a cross-sectional study. PLoS ONE 14, e0210111 (2019).
World Bank Group. GNI per capita, Atlas method (current US$). World Bank https://data.worldbank.org/indicator/NY.GNP.PCAP.CD (2024).
Allison, P. D. Fixed Effects Regression Models (SAGE, 2009).
Brüderl, J. & Ludwig, V. in The SAGE Handbook of Regression Analysis and Causal Inference (eds Best H. & Wolf C.) 327–357 (2015).
Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2010).
Falkenström, F., Solomonov, N. & Rubel, J. To detrend, or not to detrend, that is the question? The effects of detrending on cross-lagged effects in panel models. Psychol. Methods https://doi.org/10.1037/met0000632 (2023).
Giesselmann, M. & Schmidt-Catran, A. W. Interactions in fixed effects regression models. Sociol. Methods Res. 51, 1100–1127 (2022).
World Bank Group. Indicators. World Bank https://data.worldbank.org/indicator (2024).
Van Lissa, C. J. Doing meta-analysis in R and exploring heterogeneity using metaforest. GitHub https://cjvanlissa.github.io/Doing-Meta-Analysis-in-R/ (2019).
Strobl, C., Malley, J. & Tutz, G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14, 323 (2009).
Fife, D. A. & D’Onofrio, J. Common, uncommon, and novel applications of random forest in psychological research. Behav. Res. Methods 55, 2447–2466 (2023).
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
Cramer, A. O. et al. Hidden multiplicity in exploratory multiway ANOVA: prevalence and remedies. Psychon. Bull. Rev. 23, 640–647 (2016).
Diener, E., Inglehart, R. & Tay, L. Theory and validity of life satisfaction scales. Soc. Indic. Res. 112, 497–527 (2013).
World Bank Group. Inflation, GDP deflator: linked series (annual %). World Bank https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG.AD (2024).

