Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
Toh, C.-T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199â203 (2020).
Tian, H. et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 615, 56â61 (2023).
Kidambi, P. R., Chaturvedi, P. & Moehring, N. K. Subatomic species transport through atomically thin membranes: present and future applications. Science 374, eabd7687 (2021).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109â162 (2009).
Crespi, V. H., Benedict, L. X., Cohen, M. L. & Louie, S. G. Prediction of a pure-carbon planar covalent metal. Phys. Rev. B 53, R13303âR13305 (1996).
Fei, Y. et al. Defective nanographenes containing seven-five-seven (7â5â7)-membered rings. J. Am. Chem. Soc. 143, 2353â2360 (2021).
Chen, D. et al. Stone-Wales defects preserve hyperuniformity in amorphous two-dimensional networks. Proc. Natl Acad. Sci. USA 118, e2016862118 (2021).
Stumm, P., Drabold, D. A. & Fedders, P. A. Defects, doping, and conduction mechanisms in nitrogen-doped tetrahedral amorphous carbon. J. Appl. Phys. 81, 1289â1295 (1997).
Robertson, J. Amorphous carbon. Adv. Phys. 35, 317â374 (1986).
Robertson, J. & OâReilly, E. P. Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, 2946â2957 (1987).
Xue, Y. et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134, 11060â11063 (2012).
Zhang, J. et al. Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 26, 2460â2466 (2014).
Leroux, F. & Besse, J.-P. Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507â3515 (2001).
Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215â220 (2012).
Sahabudeen, H. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 7, 13461 (2016).
Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379â1384 (2019).
Wang, Z. et al. Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted Dirac cones. Nano Lett. 15, 6182â6186 (2015).
Liu, Y. & Yakobson, B. I. Cones, Pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178â2183 (2010).
Do Nascimento, G. M., Constantino, V. R. L. & Temperini, M. L. A. Spectroscopic characterization of doped poly(benzidine) and its nanocomposite with cationic clay. J. Phys. Chem. B 108, 5564â5571 (2004).
Ayiania, M., Weiss-Hortala, E., Smith, M., McEwen, J.-S. & Garcia-Perez, M. Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon 167, 559â574 (2020).
Menon, V. P., Lei, J. & Martin, C. R. Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils. Chem. Mater. 8, 2382â2390 (1996).
Coffman, F. L. et al. Near-edge X-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials. Appl. Phys. Lett. 69, 568â570 (1996).
Hua, W., Gao, B., Li, S., Ã gren, H. & Luo, Y. X-ray absorption spectra of graphene from first-principles simulations. Phys. Rev. B 82, 155433 (2010).
Bulushev, D. A. et al. Single isolated Pd2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal. 6, 681â691 (2016).
Sadki, S., Schottland, P., Brodie, N. & Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283â293 (2000).
Ertekin, E., Chrzan, D. C. & Daw, M. S. Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene. Phys. Rev. B 79, 155421 (2009).
Ma, J., Alfè, D., Michaelides, A. & Wang, E. Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 80, 033407 (2009).
Tauc, J., Grigorovici, R. & Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B Basic Solid State Phys. 15, 627â637 (1966).
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37â46 (1968).
Zhang, J., Lu, W., Li, Y. S., Cai, J. & Chen, L. Dielectric force microscopy: imaging charge carriers in nanomaterials without electrical contacts. Acc. Chem. Res. 48, 1788â1796 (2015).
Yang, Y. et al. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017).
Jiang, Y. et al. Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate. ACS Nano 5, 6195â6201 (2011).
Gildemeister, A. E. et al. Measurement of the tip-induced potential in scanning gate experiments. Phys. Rev. B 75, 195338 (2007).
Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571â574 (2010).
Francisco, D. L. P. et al. Hyperspy/hyperspy: Release v1.6.2 (HyperSpy, 2021).
Clausen, A. et al. LiberTEM: software platform for scalable multidimensional data processing in transmission electron microscopy. J. Open Source Softw. https://doi.org/10.21105/joss.02006 (2020).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15â50 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865â3868 (1996).
Tkalych, A. J., Zhuang, H. L. & Carter, E. A. A density functional + U assessment of oxygen evolution reaction mechanisms on β-NiOOH. ACS Catal. 7, 5329â5339 (2017).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456â1465 (2011).