Friday, September 27, 2024
No menu items!
HomeNatureNitrogen-doped amorphous monolayer carbon | Nature

Nitrogen-doped amorphous monolayer carbon | Nature

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Toh, C.-T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, H. et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 615, 56–61 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kidambi, P. R., Chaturvedi, P. & Moehring, N. K. Subatomic species transport through atomically thin membranes: present and future applications. Science 374, eabd7687 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crespi, V. H., Benedict, L. X., Cohen, M. L. & Louie, S. G. Prediction of a pure-carbon planar covalent metal. Phys. Rev. B 53, R13303–R13305 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fei, Y. et al. Defective nanographenes containing seven-five-seven (7–5–7)-membered rings. J. Am. Chem. Soc. 143, 2353–2360 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, D. et al. Stone-Wales defects preserve hyperuniformity in amorphous two-dimensional networks. Proc. Natl Acad. Sci. USA 118, e2016862118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stumm, P., Drabold, D. A. & Fedders, P. A. Defects, doping, and conduction mechanisms in nitrogen-doped tetrahedral amorphous carbon. J. Appl. Phys. 81, 1289–1295 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Robertson, J. Amorphous carbon. Adv. Phys. 35, 317–374 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Robertson, J. & O’Reilly, E. P. Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, 2946–2957 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xue, Y. et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134, 11060–11063 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 26, 2460–2466 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leroux, F. & Besse, J.-P. Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahabudeen, H. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 7, 13461 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted Dirac cones. Nano Lett. 15, 6182–6186 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. & Yakobson, B. I. Cones, Pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178–2183 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Do Nascimento, G. M., Constantino, V. R. L. & Temperini, M. L. A. Spectroscopic characterization of doped poly(benzidine) and its nanocomposite with cationic clay. J. Phys. Chem. B 108, 5564–5571 (2004).

    Article 

    Google Scholar
     

  • Ayiania, M., Weiss-Hortala, E., Smith, M., McEwen, J.-S. & Garcia-Perez, M. Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon 167, 559–574 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Menon, V. P., Lei, J. & Martin, C. R. Investigation of molecular and supermolecular structure in template-synthesized polypyrrole tubules and fibrils. Chem. Mater. 8, 2382–2390 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Coffman, F. L. et al. Near-edge X-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials. Appl. Phys. Lett. 69, 568–570 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hua, W., Gao, B., Li, S., Ågren, H. & Luo, Y. X-ray absorption spectra of graphene from first-principles simulations. Phys. Rev. B 82, 155433 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Bulushev, D. A. et al. Single isolated Pd2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal. 6, 681–691 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sadki, S., Schottland, P., Brodie, N. & Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000).

    Article 

    Google Scholar
     

  • Ertekin, E., Chrzan, D. C. & Daw, M. S. Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene. Phys. Rev. B 79, 155421 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J., Alfè, D., Michaelides, A. & Wang, E. Stone-Wales defects in graphene and other planar sp2-bonded materials. Phys. Rev. B 80, 033407 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tauc, J., Grigorovici, R. & Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B Basic Solid State Phys. 15, 627–637 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Lu, W., Li, Y. S., Cai, J. & Chen, L. Dielectric force microscopy: imaging charge carriers in nanomaterials without electrical contacts. Acc. Chem. Res. 48, 1788–1796 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. et al. Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate. ACS Nano 5, 6195–6201 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gildemeister, A. E. et al. Measurement of the tip-induced potential in scanning gate experiments. Phys. Rev. B 75, 195338 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Francisco, D. L. P. et al. Hyperspy/hyperspy: Release v1.6.2 (HyperSpy, 2021).

  • Clausen, A. et al. LiberTEM: software platform for scalable multidimensional data processing in transmission electron microscopy. J. Open Source Softw. https://doi.org/10.21105/joss.02006 (2020).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tkalych, A. J., Zhuang, H. L. & Carter, E. A. A density functional + U assessment of oxygen evolution reaction mechanisms on β-NiOOH. ACS Catal. 7, 5329–5339 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments