Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).
Takemura, S.-Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175â181 (2013).
Takemura, S., Nern, A., Chklovskii, D. B. & Scheffer, L. K. The comprehensive connectome of a neural substrate for âONâ motion detection in Drosophila. eLife 6, e24394 (2017).
MICrONS Consortium. Functional connectomics spanning multiple areas of mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2021.07.28.454025 (2021).
Shapson-Coe, A. et al. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 384, eadk4858 (2024).
Loomba, S. et al. Connectomic comparison of mouse and human cortex. Science 377, eabo0924 (2022).
Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nat. Methods 18, 771â774 (2021).
Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119â128 (2022).
Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730â743.e22 (2018).
Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574â2594.e23 (2024).
Matsliah, A. et al. Neuronal parts list and wiring diagram for a visual system. Nature https://doi.org/10.1038/s41586-024-07981-1 (2024).
Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature https://doi.org/10.1038/s41586-024-07686-5 (2024).
Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258â261 (2012).
Sporns, O., Tononi, G. & Kötter, R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).
Costandi, M. Anti-connectome-ism. The Guardian (21 September 2012).
Lichtman, J. W. & Denk, W. The big and the small: challenges of imaging the brainâs circuits. Science 334, 618â623 (2011).
Briggman, K. L. & Bock, D. D. Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 154â161 (2012).
Coen, P. et al. Dynamic sensory cues shape song structure in Drosophila. Nature 507, 233â237 (2014).
Fisher, Y. E. Flexible navigational computations in the Drosophila central complex. Curr. Opin. Neurobiol. 73, 102514 (2022).
Cognigni, P., Felsenberg, J. & Waddell, S. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr. Opin. Neurobiol. 49, 51â58 (2018).
Schretter, C. E. et al. Cell types and neuronal circuitry underlying female aggression in Drosophila. eLife 9, e58942 (2020).
Deutsch, D. et al. The neural basis for a persistent internal state in Drosophila females. eLife 9, e59502 (2020).
Li, F. et al. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 9, e62576 (2020).
Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 10, e66039 (2021).
Baker, C. A. et al. Neural network organization for courtship-song feature detection in Drosophila. Curr. Biol. 32, 3317â3333.e7 (2022).
Schlegel, P., Bates, A. S., Stürner, T. & Jagannathan, S. R. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 10, e66018 (2021).
Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18, 1067â1076 (2015).
Farris, S. M. Are mushroom bodies cerebellum-like structures? Arthropod Struct. Dev. 40, 368â379 (2011).
Pacheco, D. A., Thiberge, S. Y., Pnevmatikakis, E. & Murthy, M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat. Neurosci. 24, 93â104 (2021).
Brezovec, B. E. et al. Mapping the neural dynamics of locomotion across the Drosophila brain. Curr. Biol. 34, 710â726.e4 (2024).
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B 314, 1â340 (1986).
Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63â71 (2019).
Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).
Shiu, P. K. et al. A Drosophila computational brain model reveals sensorimotor processing. Nature https://doi.org/10.1038/s41586-024-07763-9 (2024).
Eichler, K. et al. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. eLife 12, RP87602 (2024).
Stürner, T. et al. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. Preprint at bioRxiv https://doi.org/10.1101/2024.06.04.596633 (2024).
Garner, D. et al. Connectome reconstruction predicts visual features used for navigation. Nature https://doi.org/10.1038/s41586-024-07967-z (2024).
Ganguly, I., Heckman, E. L., Litwin-Kumar, A., Clowney, E. J. & Behnia, R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat. Commun. 15, 5698 (2024).
Pospisil, D. A. et al. The fly connectome reveals a path to the effectome. Nature https://doi.org/10.1038/s41586-024-07982-0 (2024).
Reinhard, N., Fukuda, A., Manoli, G., Derksen, E. & Saito, A. Synaptic and peptidergic connectomes of the Drosophila circadian clock. Preprint at bioRxiv https://doi.org/10.1101/2023.09.11.557222 (2023).
Christenson, M. P. et al. Hue selectivity from recurrent circuitry in Drosophila. Nat. Neurosci. 27, 1137â1147 (2024).
Lin, A. et al. Network statistics of the whole-brain connectome of Drosophila. Nature https://doi.org/10.1038/s41586-024-07968-y (2024).
Sapkal, N. et al. Neural circuit mechanisms underlying context-specific halting in Drosophila. Nature https://doi.org/10.1038/s41586-024-07854-7 (2024).
Seung, H. S. Predicting visual function by interpreting a neuronal wiring diagram. Nature https://doi.org/10.1038/s41586-024-07953-5 (2024).
Cornean, J. et al. Heterogeneity of synaptic connectivity in the fly visual system. Nat. Commun. 15, 1570 (2024).
Cachero, S., Ostrovsky, A. D., Jai, Y. Y. & Dickson, B. J. Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589â1601 (2010).
Murthy, M., Fiete, I. & Laurent, G. Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59, 1009â1023 (2008).
Zheng, Z. et al. Structured sampling of olfactory input by the fly mushroom body. Curr. Biol. 32, 3334â3349.e6 (2022).
Lin, A. et al. Network statistics of the whole-brain connectome of Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2023.07.29.551086 (2023).
Dorkenwald, S. et al. CAVE: Connectome Annotation Versioning Engine. Preprint at bioRxiv https://doi.org/10.1101/2023.07.26.550598 (2023).
Schüz, A. & Palm, G. Density of neurons and synapses in the cerebral cortex of the mouse. J. Comp. Neurol. 286, 442â455 (1989).
Dorkenwald, S. et al. Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14, 435â442 (2017).
Schneider-Mizell, C. M. et al. Quantitative neuroanatomy for connectomics in Drosophila. eLife 5, e12059 (2016).
Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759â774.e18 (2021).
Takemura, S.-Y. et al. A connectome of the male Drosophila ventral nerve cord. eLife 13, RP97769 (2024).
Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. Preprint at bioRxiv https://doi.org/10.1101/2023.06.05.543407 (2023).
Kim, H. et al. Wiring patterns from auditory sensory neurons to the escape and song-relay pathways in fruit flies. J. Comp. Neurol. 528, 2068â2098 (2020).
Sterne, G. R., Otsuna, H., Dickson, B. J. & Scott, K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife 10, e71679 (2021).
Azevedo, A. et al. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 631, 360â368 (2024).
Wu, M. et al. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife 5, e21022 (2016).
Otsuna, H. & Ito, K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J. Comp. Neurol. 497, 928â958 (2006).
Zhao, A. et al. A comprehensive neuroanatomical survey of the Drosophila lobula plate tangential neurons with predictions for their optic flow sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2023.10.16.562634 (2023).
Repérant, J. et al. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. Brain Res. Rev. 52, 1â57 (2006).
Karuppudurai, T. et al. A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron 81, 603â615 (2014).
Meinertzhagen, I. A. Of what use is connectomics? A personal perspective on the Drosophila connectome. J. Exp. Biol. 221, jeb164954 (2018).
Chklovskii, D. B. Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43, 609â617 (2004).
Kremer, M. C., Jung, C., Batelli, S., Rubin, G. M. & Gaul, U. The glia of the adult Drosophila nervous system. Glia 65, 606â638 (2017).
Ohyama, T. et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633â639 (2015).
Hong, E. J. & Wilson, R. I. Simultaneous encoding of odors by channels with diverse sensitivity to inhibition. Neuron 85, 573â589 (2015).
Meier, M. & Borst, A. Extreme compartmentalization in a Drosophila amacrine cell. Curr. Biol. 29, 1545â1550.e2 (2019).
Croset, V., Treiber, C. D. & Waddell, S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 7, e34550 (2018).
Molina-Obando, S. et al. ON selectivity in the Drosophila visual system is a multisynaptic process involving both glutamatergic and GABAergic inhibition. eLife 8, e49373 (2019).
Liu, W. W. & Wilson, R. I. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc. Natl Acad. Sci. USA 110, 10294â10299 (2013).
Zingg, B. et al. Neural networks of the mouse neocortex. Cell 156, 1096â1111 (2014).
Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207â214 (2014).
Markov, N. T. et al. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17â36 (2014).
Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023).
Chiang, A.-S. et al. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1â11 (2011).
Kasthuri, N. & Lichtman, J. W. The rise of the âprojectomeâ. Nat. Methods 4, 307â308 (2007).
Ito, K. et al. A systematic nomenclature for the insect brain. Neuron 81, 755â765 (2014).
Fischbach, K.-F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441â475 (1989).
Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl Acad. Sci. USA 112, E2967âE2976 (2015).
Bae, J. A. et al. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173, 1293â1306.e19 (2018).
Shinomiya, K., Nern, A., Meinertzhagen, I. A., Plaza, S. M. & Reiser, M. B. Neuronal circuits integrating visual motion information in Drosophila melanogaster. Curr. Biol. 32, 3529â3544.e2 (2022).
Lappalainen, J. K. et al. Connectome-constrained networks predict neural activity across the fly visual system. Nature https://doi.org/10.1038/s41586-024-07939-3 (2024).
Snell, N. J. et al. Complex representation of taste quality by second-order gustatory neurons in Drosophila. Curr. Biol. 32, 3758â3772.e4 (2022).
Vogt, K. et al. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. eLife 5, e14009 (2016).
Mu, S. et al. 3D reconstruction of cell nuclei in a full Drosophila brain. Preprint at bioRxiv https://doi.org/10.1101/2021.11.04.467197 (2021).
Hofbauer, A. & Buchner, E. Does Drosophila have seven eyes? Naturwissenschaften 76, 335â336 (1989).
Hu, K. G., Reichert, H. & Stark, W. S. Electrophysiological characterization of Drosophila ocelli. J. Comp. Physiol. 126, 15â24 (1978).
Stark, W. S., Sapp, R. & Carlson, S. D. Ultrastructure of the ocellar visual system in normal and mutant Drosophila melanogaster. J. Neurogenet. 5, 127â153 (1989).
Stange, G., Stowe, S., Chahl, J. S. & Massaro, A. Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection. J. Comp. Physiol. A 188, 455â467 (2002).
Cheong, H. S. J. et al. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila male adult nerve cord connectome. Preprint at bioRxiv https://doi.org/10.1101/2023.06.07.543976 (2023).
Suver, M. P., Huda, A., Iwasaki, N., Safarik, S. & Dickinson, M. H. An array of descending visual interneurons encoding self-motion in Drosophila. J. Neurosci. 36, 11768â11780 (2016).
Haag, J., Wertz, A. & Borst, A. Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J. Neurosci. 27, 1992â2000 (2007).
Kim, A. J., Fenk, L. M., Lyu, C. & Maimon, G. Quantitative predictions orchestrate visual signaling in Drosophila. Cell 168, 280â294.e12 (2017).
Braitenberg, V. Vehicles: Experiments in Synthetic Psychology (MIT Press, 1984).
Seung, H. S. Connectome: How the Brainâs Wiring Makes Us Who We Are (Houghton Mifflin Harcourt, 2012).
Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 9, e50901 (2020).
Groschner, L. N., Malis, J. G., Zuidinga, B. & Borst, A. A biophysical account of multiplication by a single neuron. Nature 603, 119â123 (2022).
Ammer, G. et al. Multilevel visual motion opponency in Drosophila. Nat. Neurosci. 26, 1894â1905 (2023).
Knott, G., Marchman, H., Wall, D. & Lich, B. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28, 2959â2964 (2008).
Xu, C. S. et al. Enhanced FIB-SEM systems for large-volume 3D imaging. eLife 6, e25916 (2017).
Hayworth, K. J. et al. Gas cluster ion beam SEM for imaging of large tissue samples with 10 nm isotropic resolution. Nat. Methods 17, 68â71 (2020).
Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).
Leighton, S. B. SEM images of block faces, cut by a miniature microtome within the SEM – a technical note. Scan. Electron Microsc. 1981, 73â76 (1981).
Macrina, T. et al. Petascale neural circuit reconstruction: automated methods. Preprint at bioRxiv https://doi.org/10.1101/2021.08.04.455162 (2021).
Popovych, S. et al. Petascale pipeline for precise alignment of images from serial section electron microscopy. Nat. Commun. 15, 289 (2024).
Januszewski, M. et al. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605â610 (2018).
Jain, V. et al. Supervised learning of image restoration with convolutional networks. In Proc. 2007 IEEE 11th International Conference on Computer Vision 636â643 (IEEE, 2007).
Turaga, S. C. et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511â538 (2010).
Maitin-Shepard, J. Neuroglancer. https://github.com/google/neuroglancer (2020).
Verasztó, C. et al. Whole-animal connectome and cell-type complement of the three-segmented Platynereis dumerilii larva. Preprint at bioRxiv https://doi.org/10.1101/2020.08.21.260984 (2020).
Schoofs, A. et al. Serotonergic reinforcement of a complete swallowing circuit. Preprint at bioRxiv https://doi.org/10.1101/2023.05.26.542464 (2023).
Ngai, J. BRAIN 2.0: transforming neuroscience. Cell 185, 4â8 (2022).
Jefferis, G., Collinson, L., Bosch, C., Costa, M. & Schlegel, P. Scaling up Connectomics: the road to a whole mouse brain connectome (Wellcome, 2023).
Collins, F. S., Morgan, M. & Patrinos, A. The Human Genome Project: lessons from large-scale biology. Science 300, 286â290 (2003).
Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J. & Saalfeld, S. Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete Drosophila brain. In Medical Image Computing and Computer Assisted Intervention â MICCAI 2018 (eds Frangi, A. F. et al.) 317â325 (Springer, 2018).
Bates, A. S. et al. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife 9, e53350 (2020).
Mitchell, E., Keselj, S., Popovych, S., Buniatyan, D. & Seung, H. S. Siamese encoding and alignment by multiscale learning with self-supervision. Preprint at https://doi.org/10.48550/arXiv.1904.02643 (2019).
Lee, K., Zung, J., Li, P., Jain, V. & Seung, H. S. Superhuman accuracy on the SNEMI3D Connectomics Challenge. Preprint at https://doi.org/10.48550/arXiv.1706.00120 (2017).
Lu, R., Zlateski, A. & Seung, H. S. Large-scale image segmentation based on distributed clustering algorithms. Preprint at https://doi.org/10.48550/arXiv.2106.10795 (2021).
Lapraz, F. et al. Asymmetric activity of NetrinB controls laterality of the Drosophila brain. Nat. Commun. 14, 1052 (2023).
Dorkenwald, S. et al. Binary and analog variation of synapses between cortical pyramidal neurons. eLife 11, e76120 (2022).
Kim, J. S. et al. Space-time wiring specificity supports direction selectivity in the retina. Nature 509, 331â336 (2014).
Brittin, C. A., Cook, S. J., Hall, D. H., Emmons, S. W. & Cohen, N. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature 591, 105â110 (2021).
Sato, M., Bitter, I., Bender, M. A., Kaufman, A. E. & Nakajima, M. TEASAR: tree-structure extraction algorithm for accurate and robust skeletons. In Proc. 8th Pacific Conference on Computer Graphics and Applications (eds Barsky, B. A. A. et al.) (IEEE, 2000); https://doi.org/10.1109/PCCGA.2000.883951.
Schlegel, P. et al. navis-org/navis: version 1.5.0. Zenodo https://doi.org/10.5281/ZENODO.8191725 (2023).
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://doi.org/10.48550/arXiv.1802.03426 (2018).