Friday, November 22, 2024
No menu items!
HomeNatureNeoarchaean oxygen-based nitrogen cycle en route to the Great Oxidation Event

Neoarchaean oxygen-based nitrogen cycle en route to the Great Oxidation Event

  • Ader, M. et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: assumptions and perspectives. Chem. Geol. 429, 93–110 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Sci. Rev. 160, 220–239 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomazo, C., Ader, M. & Philippot, P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9, 107–120 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Rossignol, C. et al. Stratigraphy and geochronological constraints of the Serra Sul Formation (Carajás Basin, Amazonian Craton, Brazil). Precambrian Res. 351, 105981 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem. Cycles 8, 103–116 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X., Sigman, D. M., Morel, F. M. M. & Kraepiel, A. M. L. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc. Natl Acad. Sci. 111, 4782–4787 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigman, D. M., Karsh, K. L. & Casciotti, K. L. in Encyclopedia of Ocean Sciences 2nd edn (Steele, J. H.) 40–54 (Academic Press, 2009).

  • Möbius, J. Isotope fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. Geochim. Cosmochim. Acta 105, 422–432 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mariotti, A. et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413–430 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68, 3802–3808 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishizawa, M., Sano, Y., Ueno, Y. & Maruyama, S. Speciation and isotope ratios of nitrogen in fluid inclusions from seafloor hydrothermal deposits at ∼ 3.5 Ga. Earth Planet. Sci. Lett. 254, 332–344 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marty, B., Zimmermann, L., Pujol, M., Burgess, R. & Philippot, P. Nitrogen isotopic composition and density of the Archean atmosphere. Science 342, 101–104 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stüeken, E. E., Buick, R., Guy, B. M. & Koehler, M. C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A. & Buick, R. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth Planet. Sci. Lett. 500, 117–126 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the ∼2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. 115, 7711–7716 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zerkle, A. L. et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2, 725–729 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Res. 96, 63–82 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jia, Y. & Kerrich, R. Nitrogen 15–enriched Precambrian kerogen and hydrothermal systems. Geochem. Geophys. Geosyst. 5, Q07005 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kerrich, R., Jia, Y., Manikyamba, C. & Naqvi, S. M. Secular variations of N-isotopes in terrestrial reservoirs and ore deposits. Geol. Soc. Am. Bull. 198, 81–104 (2006).


    Google Scholar
     

  • Stüeken, E. E. et al. Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology 15, 767–783 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hayes, J. M. in Early Life Earth, Nobel Symposium, No. 84 (ed. Bengston, S.) 220–236 (Columbia Univ. Press, 1994).

  • Awramik, S. M. & Buchheim, H. P. A giant, Late Archean lake system: the Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res. 174, 215–240 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rossignol, C. et al. Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses. Geosci. Front. 13, 101202 (2021).

    Article 

    Google Scholar
     

  • Perelló, J., Zulliger, G., García, A. & Creaser, R. A. Revisiting the IOCG geology and age of Alemão in the Igarapé Bahia camp, Carajás province, Brazil. J. South Am. Earth Sci. 124, 104273 (2023).

    Article 

    Google Scholar
     

  • Tomkins, A. G. et al. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature 533, 235–238 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stüeken, E. E., Boocock, T. J., Robinson, A., Mikhail, S. & Johnson, B. W. Hydrothermal recycling of sedimentary ammonium into oceanic crust and the Archean ocean at 3.24 Ga. Geology 49, 822–826 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Figueiredo e Silva, R. C., Lobato, L. M., Zucchetti, M., Hagemann, S. & Vennemann, T. Geotectonic signature and hydrothermal alteration of metabasalts under- and overlying the giant Serra Norte iron deposits, Carajás mineral Province. Ore Geol. Rev. 120, 103407 (2020).

    Article 

    Google Scholar
     

  • Martins, P. L. G. et al. Low paleolatitude of the Carajás Basin at ∼2.75 Ga: paleomagnetic evidence from basaltic flows in Amazonia. Precambrian Res. 365, 106411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, L., Lollar, B. S., Li, H., Wortmann, U. G. & Lacrampe-Couloume, G. Ammonium stability and nitrogen isotope fractionations for NH4+–NH3(aq)–NH3(gas) systems at 20–70 °C and pH of 2–13: applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochim. Cosmochim. Acta 84, 280–296 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tesdal, J.-E., Galbraith, E. & Kienast, M. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences 10, 101–118 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnol. Oceanogr. 37, 1447–1459 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Papineau, D. et al. High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian Res. 171, 37–56 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Ammonium availability in the Late Archaean nitrogen cycle. Nat. Geosci. 12, 553–557 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saitoh, M. et al. Nitrogen isotope record from a mid-oceanic paleo-atoll limestone to constrain the redox state of the Panthalassa ocean in the Capitanian (Late Guadalupian, Permian). Paleoceanogr. Paleoclimatol. 38, e2022PA004573 (2023).

    Article 

    Google Scholar
     

  • Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T. & Kinney, C. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria. Chem. Geol. 267, 96–107 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Casciotti, K. L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73, 2061–2076 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grotzinger, J. P. & Kasting, J. F. New constraints on Precambrian ocean composition. J. Geol. 101, 235–243 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellerin, A. et al. Iron-mediated anaerobic ammonium oxidation recorded in the early Archean ferruginous ocean. Geobiology 21, 277–289 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouyon, A. et al. Multiple sulfur isotope record from the Precambrian of South America shows an unusual trend. American Geophysical Union, Fall Meeting 2018, abstract #V31B-04 (2018).

  • Thomazo, C., Ader, M., Farquhar, J. & Philippot, P. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279, 65–75 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl Acad. Sci. 109, 15996–16003 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boocock, T. J., Mikhail, S., Prytulak, J., Di Rocco, T. & Stüeken, E. E. Nitrogen mass fraction and stable isotope ratios for fourteen geological reference materials: evaluating the applicability of elemental analyser versus sealed tube combustion methods. Geostand. Geoanalytical Res. 44, 537–551 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ader, M. et al. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth Planet. Sci. Lett. 396, 1–13 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kendall, C. & Grim, E. Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. Anal. Chem. 62, 526–529 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Busigny, V., Ader, M. & Cartigny, P. Quantification and isotopic analysis of nitrogen in rocks at the ppm level using sealed tube combustion technique: a prelude to the study of altered oceanic crust. Chem. Geol. 223, 249–258 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fraga-Ferreira, P. L. et al. The Nitrogen Cycle in an epeiric sea in the core of Gondwana Supercontinent: a study on the Ediacaran-Cambrian Bambuí Group, east-central Brazil. Front. Earth Sci. 9, 692895 (2021).

    Article 

    Google Scholar
     

  • Blake, T. S., Buick, R., Brown, S. J. A. & Barley, M. E. Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates. Precambrian Res. 133, 143–173 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F. & Thorne, A. M. The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U‐Pb results. Aust. J. Earth Sci. 38, 261–281 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Kasbohm, J., Schoene, B., Maclennan, S. A., Evans, D. A. D. & Weiss, B. P. Paleogeography and high-precision geochronology of the Neoarchean Fortescue Group, Pilbara, Western Australia. Precambrian Res. 394, 107114 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Martins, P. L. G. et al. Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: petrography, geochemistry and tectonic significance of basalts from the Carajás Basin. Precambrian Res. 302, 340–357 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lepot, K., Benzerara, K., Brown, G. E. & Philippot, P. Microbially influenced formation of 2,724-million-year-old stromatolites. Nat. Geosci. 1, 118–121 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vasquez, M. L. & da Rosa-Costa, L. T. Geologia e Recursos Minerais do Estado do Pará (CPRM, 2008).

  • Rego, E. S. et al. Anoxygenic photosynthesis linked to Neoarchean iron formations in Carajás (Brazil). Geobiology 19, 326–341 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamber, B. S., Webb, G. E. & Gallagher, M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. J. Geol. Soc. 171, 745–763 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de Melo, G. H. C. et al. Evolution of the Igarapé Bahia Cu-Au deposit, Carajás Province (Brazil): early syngenetic chalcopyrite overprinted by IOCG mineralization. Ore Geol. Rev. 111, 102993 (2019).

    Article 

    Google Scholar
     

  • Dreher, A. M., Xavier, R. P. & Martini, S. L. Fragmental rocks of the Igarapé Bahia Cu-Au deposit, Carajas Mineral Province, Brazil. Rev. Bras. Geociências 35, 359–368 (2005).

    Article 

    Google Scholar
     

  • Dreher, A. M., Xavier, R. P., Taylor, B. E. & Martini, S. L. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu–Au deposit, Carajás Province, Brazil. Miner. Deposita 43, 161–184 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Galarza, M. A., Macambira, M. J. B. & Villas, R. N. Dating and isotopic characteristics (Pb and S) of the Fe oxide–Cu–Au–U–REE Igarapé Bahia ore deposit, Carajás mineral province, Pará state, Brazil. J. South Am. Earth Sci. 25, 377–397 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ronzê, P. C., Soares, A. D., dos Santos, M. & Barreira, C. F. in Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective (ed. Porter, T. M.) 191–202 (PGC Publishing, 2000).

  • Coffey, J. M., Flannery, D. T., Walter, M. R. & George, S. C. Sedimentology, stratigraphy and geochemistry of a stromatolite biofacies in the 2.72 Ga Tumbiana Formation, Fortescue Group, Western Australia. Precambrian Res. 236, 282–296 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lowe, D. R. Sediment gravity flows; II, depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 52, 279–297 (1982).


    Google Scholar
     

  • Mulder, T. & Alexander, J. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269–299 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Nemec, W. & Steel, R. J. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. Sedimentology of Gravels and Conglomerates — Memoir 10, 1–31 (1984).

  • Postma, G., Kleverlaan, K. & Cartigny, M. J. B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology 61, 2268–2290 (2014).

    Article 

    Google Scholar
     

  • Postma, G. & Cartigny, M. J. B. Supercritical and subcritical turbidity currents and their deposits—a synthesis. Geology 42, 987–990 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Walker, R. G. Generalized facies models for resedimented conglomerates of turbidite association. Geol. Soc. Am. Bull. 86, 737–748 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Myrow, P. M. et al. Flat-pebble conglomerate: its multiple origins and relationship to metre-scale depositional cycles. Sedimentology 51, 973–996 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Lehmann, M. F., Bernasconi, S. M., Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 66, 3573–3584 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bebout, G. E. & Fogel, M. L. Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim. Cosmochim. Acta 56, 2839–2849 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, S. R. & Philippot, P. Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland. Chem. Geol. 144, 257–268 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haendel, D., Mühle, K., Nitzsche, H.-M., Stiehl, G. & Wand, U. Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta 50, 749–758 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jia, Y. Nitrogen isotope fractionations during progressive metamorphism: a case study from the Paleozoic Cooma metasedimentary complex, southeastern Australia. Geochim. Cosmochim. Acta 70, 5201–5214 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ader, M., Boudou, J.-P., Javoy, M., Goffe, B. & Daniels, E. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). Org. Geochem. 29, 315–323 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ader, M. et al. Nitrogen isotopic evolution of carbonaceous matter during metamorphism: methodology and preliminary results. Chem. Geol. 232, 152–169 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boudou, J.-P. et al. Organic nitrogen chemistry during low-grade metamorphism. Geochim. Cosmochim. Acta 72, 1199–1221 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stüeken, E. E., Zaloumis, J., Meixnerová, J. & Buick, R. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. Geochim. Cosmochim. Acta 217, 80–94 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Stüeken, E. E., Gregory, D. D., Mukherjee, I. & McGoldrick, P. Sedimentary exhalative venting of bioavailable nitrogen into the early ocean. Earth Planet. Sci. Lett. 565, 116963 (2021).

    Article 

    Google Scholar
     

  • Cordani, U. G. et al. Tectonic map of South America=Mapa tectônico da América do Sul (Commission for the Geological Map of the World, 2016).

  • Vasquez, M. L., Sousa, C. S. & Carvalho, J. M. A. Mapa geológico e de recursos minerais do Estado do Pará, escala 1: 1.000. 000. Programa Geol. Bras. Belém CPRM (2008).

  • Machado, N., Lindenmayer, Z., Krogh, T. E. & Lindenmayer, D. U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res. 49, 329–354 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trendall, A. F., Basei, M. A. S., de Laeter, J. R. & Nelson, D. R. SHRIMP zircon U–Pb constraints on the age of the Carajás formation, Grão ParáGroup, Amazon Craton. J. South Am. Earth Sci. 11, 265–277 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Rossignol, C. et al. Neoarchean environments associated with the emplacement of a large igneous province: insights from the Carajás Basin, Amazonia Craton. J. South Am. Earth Sci. 130, 104574 (2023).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments