Ader, M. et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: assumptions and perspectives. Chem. Geol. 429, 93â110 (2016).
Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earthâs biogeochemical nitrogen cycle. Earth-Sci. Rev. 160, 220â239 (2016).
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earthâs early ocean and atmosphere. Nature 506, 307â315 (2014).
Thomazo, C., Ader, M. & Philippot, P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9, 107â120 (2011).
Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1â10 (2015).
Rossignol, C. et al. Stratigraphy and geochronological constraints of the Serra Sul Formation (Carajás Basin, Amazonian Craton, Brazil). Precambrian Res. 351, 105981 (2020).
Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem. Cycles 8, 103â116 (1994).
Zhang, X., Sigman, D. M., Morel, F. M. M. & Kraepiel, A. M. L. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc. Natl Acad. Sci. 111, 4782â4787 (2014).
Sigman, D. M., Karsh, K. L. & Casciotti, K. L. in Encyclopedia of Ocean Sciences 2nd edn (Steele, J. H.) 40â54 (Academic Press, 2009).
Möbius, J. Isotope fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. Geochim. Cosmochim. Acta 105, 422â432 (2013).
Mariotti, A. et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413â430 (1981).
Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68, 3802â3808 (2002).
Nishizawa, M., Sano, Y., Ueno, Y. & Maruyama, S. Speciation and isotope ratios of nitrogen in fluid inclusions from seafloor hydrothermal deposits at â¼ 3.5 Ga. Earth Planet. Sci. Lett. 254, 332â344 (2007).
Marty, B., Zimmermann, L., Pujol, M., Burgess, R. & Philippot, P. Nitrogen isotopic composition and density of the Archean atmosphere. Science 342, 101â104 (2013).
Stüeken, E. E., Buick, R., Guy, B. M. & Koehler, M. C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666â669 (2015).
Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A. & Buick, R. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth Planet. Sci. Lett. 500, 117â126 (2018).
Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the â¼2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. 115, 7711â7716 (2018).
Zerkle, A. L. et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465â467 (2017).
Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045â1048 (2009).
Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2, 725â729 (2009).
Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Res. 96, 63â82 (1999).
Jia, Y. & Kerrich, R. Nitrogen 15âenriched Precambrian kerogen and hydrothermal systems. Geochem. Geophys. Geosyst. 5, Q07005 (2004).
Kerrich, R., Jia, Y., Manikyamba, C. & Naqvi, S. M. Secular variations of N-isotopes in terrestrial reservoirs and ore deposits. Geol. Soc. Am. Bull. 198, 81â104 (2006).
Stüeken, E. E. et al. Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology 15, 767â783 (2017).
Hayes, J. M. in Early Life Earth, Nobel Symposium, No. 84 (ed. Bengston, S.) 220â236 (Columbia Univ. Press, 1994).
Awramik, S. M. & Buchheim, H. P. A giant, Late Archean lake system: the Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res. 174, 215â240 (2009).
Rossignol, C. et al. Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses. Geosci. Front. 13, 101202 (2021).
Perelló, J., Zulliger, G., GarcÃa, A. & Creaser, R. A. Revisiting the IOCG geology and age of Alemão in the Igarapé Bahia camp, Carajás province, Brazil. J. South Am. Earth Sci. 124, 104273 (2023).
Tomkins, A. G. et al. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature 533, 235â238 (2016).
Stüeken, E. E., Boocock, T. J., Robinson, A., Mikhail, S. & Johnson, B. W. Hydrothermal recycling of sedimentary ammonium into oceanic crust and the Archean ocean at 3.24 Ga. Geology 49, 822â826 (2021).
Figueiredo e Silva, R. C., Lobato, L. M., Zucchetti, M., Hagemann, S. & Vennemann, T. Geotectonic signature and hydrothermal alteration of metabasalts under- and overlying the giant Serra Norte iron deposits, Carajás mineral Province. Ore Geol. Rev. 120, 103407 (2020).
Martins, P. L. G. et al. Low paleolatitude of the Carajás Basin at â¼2.75 Ga: paleomagnetic evidence from basaltic flows in Amazonia. Precambrian Res. 365, 106411 (2021).
Li, L., Lollar, B. S., Li, H., Wortmann, U. G. & Lacrampe-Couloume, G. Ammonium stability and nitrogen isotope fractionations for NH4+âNH3(aq)âNH3(gas) systems at 20â70 °C and pH of 2â13: applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochim. Cosmochim. Acta 84, 280â296 (2012).
Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069â1071 (2017).
Tesdal, J.-E., Galbraith, E. & Kienast, M. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences 10, 101â118 (2013).
Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnol. Oceanogr. 37, 1447â1459 (1992).
Papineau, D. et al. High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian Res. 171, 37â56 (2009).
Yang, J. et al. Ammonium availability in the Late Archaean nitrogen cycle. Nat. Geosci. 12, 553â557 (2019).
Saitoh, M. et al. Nitrogen isotope record from a mid-oceanic paleo-atoll limestone to constrain the redox state of the Panthalassa ocean in the Capitanian (Late Guadalupian, Permian). Paleoceanogr. Paleoclimatol. 38, e2022PA004573 (2023).
Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earthâs nitrogen cycle. Science 330, 192â196 (2010).
Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T. & Kinney, C. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria. Chem. Geol. 267, 96â107 (2009).
Casciotti, K. L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73, 2061â2076 (2009).
Grotzinger, J. P. & Kasting, J. F. New constraints on Precambrian ocean composition. J. Geol. 101, 235â243 (1993).
Pellerin, A. et al. Iron-mediated anaerobic ammonium oxidation recorded in the early Archean ferruginous ocean. Geobiology 21, 277â289 (2023).
Bouyon, A. et al. Multiple sulfur isotope record from the Precambrian of South America shows an unusual trend. American Geophysical Union, Fall Meeting 2018, abstract #V31B-04 (2018).
Thomazo, C., Ader, M., Farquhar, J. & Philippot, P. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279, 65â75 (2009).
Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl Acad. Sci. 109, 15996â16003 (2012).
Boocock, T. J., Mikhail, S., Prytulak, J., Di Rocco, T. & Stüeken, E. E. Nitrogen mass fraction and stable isotope ratios for fourteen geological reference materials: evaluating the applicability of elemental analyser versus sealed tube combustion methods. Geostand. Geoanalytical Res. 44, 537â551 (2020).
Ader, M. et al. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth Planet. Sci. Lett. 396, 1â13 (2014).
Kendall, C. & Grim, E. Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. Anal. Chem. 62, 526â529 (1990).
Busigny, V., Ader, M. & Cartigny, P. Quantification and isotopic analysis of nitrogen in rocks at the ppm level using sealed tube combustion technique: a prelude to the study of altered oceanic crust. Chem. Geol. 223, 249â258 (2005).
Fraga-Ferreira, P. L. et al. The Nitrogen Cycle in an epeiric sea in the core of Gondwana Supercontinent: a study on the Ediacaran-Cambrian Bambuà Group, east-central Brazil. Front. Earth Sci. 9, 692895 (2021).
Blake, T. S., Buick, R., Brown, S. J. A. & Barley, M. E. Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates. Precambrian Res. 133, 143â173 (2004).
Arndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F. & Thorne, A. M. The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon UâPb results. Aust. J. Earth Sci. 38, 261â281 (1991).
Kasbohm, J., Schoene, B., Maclennan, S. A., Evans, D. A. D. & Weiss, B. P. Paleogeography and high-precision geochronology of the Neoarchean Fortescue Group, Pilbara, Western Australia. Precambrian Res. 394, 107114 (2023).
Martins, P. L. G. et al. Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: petrography, geochemistry and tectonic significance of basalts from the Carajás Basin. Precambrian Res. 302, 340â357 (2017).
Lepot, K., Benzerara, K., Brown, G. E. & Philippot, P. Microbially influenced formation of 2,724-million-year-old stromatolites. Nat. Geosci. 1, 118â121 (2008).
Vasquez, M. L. & da Rosa-Costa, L. T. Geologia e Recursos Minerais do Estado do Pará (CPRM, 2008).
Rego, E. S. et al. Anoxygenic photosynthesis linked to Neoarchean iron formations in Carajás (Brazil). Geobiology 19, 326â341 (2021).
Kamber, B. S., Webb, G. E. & Gallagher, M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. J. Geol. Soc. 171, 745â763 (2014).
de Melo, G. H. C. et al. Evolution of the Igarapé Bahia Cu-Au deposit, Carajás Province (Brazil): early syngenetic chalcopyrite overprinted by IOCG mineralization. Ore Geol. Rev. 111, 102993 (2019).
Dreher, A. M., Xavier, R. P. & Martini, S. L. Fragmental rocks of the Igarapé Bahia Cu-Au deposit, Carajas Mineral Province, Brazil. Rev. Bras. Geociências 35, 359â368 (2005).
Dreher, A. M., Xavier, R. P., Taylor, B. E. & Martini, S. L. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia CuâAu deposit, Carajás Province, Brazil. Miner. Deposita 43, 161â184 (2008).
Galarza, M. A., Macambira, M. J. B. & Villas, R. N. Dating and isotopic characteristics (Pb and S) of the Fe oxideâCuâAuâUâREE Igarapé Bahia ore deposit, Carajás mineral province, Pará state, Brazil. J. South Am. Earth Sci. 25, 377â397 (2008).
Ronzê, P. C., Soares, A. D., dos Santos, M. & Barreira, C. F. in Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective (ed. Porter, T. M.) 191â202 (PGC Publishing, 2000).
Coffey, J. M., Flannery, D. T., Walter, M. R. & George, S. C. Sedimentology, stratigraphy and geochemistry of a stromatolite biofacies in the 2.72 Ga Tumbiana Formation, Fortescue Group, Western Australia. Precambrian Res. 236, 282â296 (2013).
Lowe, D. R. Sediment gravity flows; II, depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 52, 279â297 (1982).
Mulder, T. & Alexander, J. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269â299 (2001).
Nemec, W. & Steel, R. J. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. Sedimentology of Gravels and Conglomerates â Memoir 10, 1â31 (1984).
Postma, G., Kleverlaan, K. & Cartigny, M. J. B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology 61, 2268â2290 (2014).
Postma, G. & Cartigny, M. J. B. Supercritical and subcritical turbidity currents and their depositsâa synthesis. Geology 42, 987â990 (2014).
Walker, R. G. Generalized facies models for resedimented conglomerates of turbidite association. Geol. Soc. Am. Bull. 86, 737â748 (1975).
Myrow, P. M. et al. Flat-pebble conglomerate: its multiple origins and relationship to metre-scale depositional cycles. Sedimentology 51, 973â996 (2004).
Lehmann, M. F., Bernasconi, S. M., Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 66, 3573â3584 (2002).
Bebout, G. E. & Fogel, M. L. Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim. Cosmochim. Acta 56, 2839â2849 (1992).
Boyd, S. R. & Philippot, P. Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland. Chem. Geol. 144, 257â268 (1998).
Haendel, D., Mühle, K., Nitzsche, H.-M., Stiehl, G. & Wand, U. Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta 50, 749â758 (1986).
Jia, Y. Nitrogen isotope fractionations during progressive metamorphism: a case study from the Paleozoic Cooma metasedimentary complex, southeastern Australia. Geochim. Cosmochim. Acta 70, 5201â5214 (2006).
Ader, M., Boudou, J.-P., Javoy, M., Goffe, B. & Daniels, E. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). Org. Geochem. 29, 315â323 (1998).
Ader, M. et al. Nitrogen isotopic evolution of carbonaceous matter during metamorphism: methodology and preliminary results. Chem. Geol. 232, 152â169 (2006).
Boudou, J.-P. et al. Organic nitrogen chemistry during low-grade metamorphism. Geochim. Cosmochim. Acta 72, 1199â1221 (2008).
Stüeken, E. E., Zaloumis, J., Meixnerová, J. & Buick, R. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. Geochim. Cosmochim. Acta 217, 80â94 (2017).
Stüeken, E. E., Gregory, D. D., Mukherjee, I. & McGoldrick, P. Sedimentary exhalative venting of bioavailable nitrogen into the early ocean. Earth Planet. Sci. Lett. 565, 116963 (2021).
Cordani, U. G. et al. Tectonic map of South America=Mapa tectônico da América do Sul (Commission for the Geological Map of the World, 2016).
Vasquez, M. L., Sousa, C. S. & Carvalho, J. M. A. Mapa geológico e de recursos minerais do Estado do Pará, escala 1: 1.000. 000. Programa Geol. Bras. Belém CPRM (2008).
Machado, N., Lindenmayer, Z., Krogh, T. E. & Lindenmayer, D. U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res. 49, 329â354 (1991).
Trendall, A. F., Basei, M. A. S., de Laeter, J. R. & Nelson, D. R. SHRIMP zircon UâPb constraints on the age of the Carajás formation, Grão ParáGroup, Amazon Craton. J. South Am. Earth Sci. 11, 265â277 (1998).
Rossignol, C. et al. Neoarchean environments associated with the emplacement of a large igneous province: insights from the Carajás Basin, Amazonia Craton. J. South Am. Earth Sci. 130, 104574 (2023).