Saturday, April 19, 2025
No menu items!
HomeNatureNegative thermal expansion and oxygen-redox electrochemistry

Negative thermal expansion and oxygen-redox electrochemistry

  • Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, B. et al. A theoretical framework for oxygen redox chemistry for sustainable batteries. Nat. Sustain. 5, 708–716 (2022).

    Article 

    Google Scholar
     

  • House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sleight, A. Zero-expansion plan. Nature 425, 674–675 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, B. et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep. Phys. Sci. 1, 100028 (2020).

    Article 

    Google Scholar
     

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F. X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, E. Tuning order in disorder. Nat. Mater. 14, 547 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keen, D. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Onsager, L. Crystal statistics I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Evans, J. S. O. et al. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 275, 61 (1996).

    Article 

    Google Scholar
     

  • Mary, T. A., Evans, J. S., Vogt, T. & Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272, 90 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lunkenheimer, P., Loidl, A., Riechers, B., Zaccone, A. & Samwer, K. Thermal expansion and the glass transition. Nat. Phys. 19, 694–699 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Giant polarization in super-tetragonal thin films through interphase strain. Science 361, 494 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. G. et al. Giant negative thermal expansion in magnetic nanocrystals. Nat. Nanotech. 3, 724–726 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liao, J. et al. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nat. Commun. 13, 2090 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, H., Imai, T., Sakai, Y. & Azuma, M. Colossal negative thermal expansion in electron-doped PbVO3 perovskites. Angew. Chem. Inter. Ed. 57, 8170–8173 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Azuma, M. et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat. Commun. 2, 347 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Local orthorhombic lattice distortions in the paramagnetic tetragonal phase of superconducting NaFe1-xNixAs. Nat. Commun. 9, 3128 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ulvestad, A. et al. Topological defect dynamics in operando battery nanoparticles. Science 348, 1344 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McCalla, E. et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frati, F., Hunault, M. O. J. Y. & de Groot, F. M. F. Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120, 4056–4110 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Assat, G., Iadecola, A., Foix, D., Dedryvère, R. & Tarascon, J.-M. Direct quantification of anionic redox over long cycling of Li-rich NMC via hard X-ray photoemission spectroscopy. ACS Energy Lett. 3, 2721–2728 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dai, K. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 1–24 (2019).

    Article 

    Google Scholar
     

  • Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Sufficient oxygen redox activation against voltage decay in Li-rich layered oxide cathode materials. ACS Mater. Lett. 3, 433–441 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, J. et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, W. et al. Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Csernica, P. M. et al. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cupid, D. M. et al. Interlaboratory study of the heat capacity of LiNi1/3Mn1/3Co1/3O2 (NMC111) with layered structure. Int. J. Mater. Res. 108, 1008–1021 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yin, C. et al. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility. Energy Storage Mater. 35, 388 (2021).

    Article 

    Google Scholar
     

  • Li, X. et al. Rational design of thermally stable polymorphic layered cathode materials for next generation lithium rechargeable batteries. Mater. Today 61, 91 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yin, C. et al. Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery. Mater. Today 51, 15 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, M. et al. High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides. Matter 4, 164–181 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, X., Wang, F., Zhu, Y. & Liu, Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 21, 3353–3358 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yang, T.-Y., Wen, W. & Yin, G.-Z. Introduction of the X-ray diffraction beamline of SSRF. Nucl. Sci. Tech. 26, 020101 (2015).


    Google Scholar
     

  • Chen, J. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 8, 14441 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casas-Cabanas, M., Reynaud, M., Rikarte, J., Horbach, P. & Rodríguez-Carvajal, J. FAULTS: a program for refinement of structures with extended defects. J. Appl. Crystallogr. 49, 2259–2269 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shunmugasundaram, R., Arumugam, R. S. & Dahn, J. A study of stacking faults and superlattice ordering in some Li-rich layered transition metal oxide positive electrode materials. J. Electrochem. Soc. 163, A1394–A1400 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Dreele, R. B. V. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments