Thursday, April 3, 2025
No menu items!
HomeNatureNear-field photon entanglement in total angular momentum

Near-field photon entanglement in total angular momentum

  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Karimi, E. et al. Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 82, 022115 (2010).

  • Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS 
    MATH 

    Google Scholar
     

  • Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Li, C.-F. Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization. Phys. Rev. A 80, 063814 (2009).

    ADS 

    Google Scholar
     

  • Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • Krenn, M., Tischler, N. & Zeilinger, A. On small beams with large topological charge. New J. Phys. 18, 033012 (2016).

    ADS 
    MATH 

    Google Scholar
     

  • Defienne, H., Reichert, M. & Fleischer, J. W. General model of photon-pair detection with an image sensor. Phys. Rev. Lett. 120, 203604 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ndagano, B. et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera. npj Quantum Inf. 6, 94 (2020).

    ADS 

    Google Scholar
     

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    ADS 
    MATH 

    Google Scholar
     

  • Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649 (2020).

    ADS 

    Google Scholar
     

  • Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Krenn, M., Hochrainer, A., Lahiri, M. & Zeilinger, A. Entanglement by path identity. Phys. Rev. Lett. 118, 080401 (2017).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Halder, M. et al. Entangling independent photons by time measurement. Nat. Phys. 3, 692–695 (2007).

    CAS 
    MATH 

    Google Scholar
     

  • Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Molina-Terriza, G., Torres, J. P. & Torner, L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Simon, C. & Pan, J.-W. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).


    Google Scholar
     

  • Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    ADS 
    MATH 

    Google Scholar
     

  • Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fickler, R. et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun. 5, 4502 (2014).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ostrovsky, E., Cohen, K., Tsesses, S., Gjonaj, B. & Bartal, G. Nanoscale control over optical singularities. Optica 5, 283 (2018).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin–orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Van Enk, S. J. & Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J. Mod. Opt. 41, 963–977 (1994).

    ADS 
    MATH 

    Google Scholar
     

  • Das, P., Yang, L.-P. & Jacob, Z. What are the quantum commutation relations for the total angular momentum of light? tutorial. J. Opt. Soc. Am. B 41, 1764 (2024).

    CAS 
    MATH 

    Google Scholar
     

  • Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kher-Aldeen, J. et al. Dynamic control and manipulation of near-fields using direct feedback. Light Sci. Appl. 13, 298 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lopez-Mago, D. & Gutiérrez-Vega, J. C. Shaping Bessel beams with a generalized differential operator approach. J. Opt. 18, 095603 (2016).

    ADS 
    MATH 

    Google Scholar
     

  • Soares, W. C., Caetano, D. P. & Hickmann, J. M. Hermite–Bessel beams and the geometrical representation of nondiffracting beams with orbital angular momentum. Opt. Express 14, 4577 (2006).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Frischwasser, K. et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photon. 15, 442–448 (2021).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dieleman, F., Tame, M. S., Sonnefraud, Y., Kim, M. S. & Maier, S. A. Experimental verification of entanglement generated in a plasmonic system. Nano Lett. 17, 7455–7461 (2017).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    CAS 
    MATH 

    Google Scholar
     

  • Fakonas, J. S., Mitskovets, A. & Atwater, H. A. Path entanglement of surface plasmons. New J. Phys. 17, 023002 (2015).

    ADS 

    Google Scholar
     

  • Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).

    CAS 
    MATH 

    Google Scholar
     

  • Dai, D. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Lightwave Technol. 35, 572–587 (2017).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335 (2011).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Olivieri, L. et al. Terahertz nonlinear ghost imaging via plane decomposition: toward near-field micro-volumetry. ACS Photon. 10, 1726–1734 (2023).

    CAS 
    MATH 

    Google Scholar
     

  • Ryczkowski, P., Barbier, M., Friberg, A. T., Dudley, J. M. & Genty, G. Ghost imaging in the time domain. Nat. Photon. 10, 167–170 (2016).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Popov, E. (ed.) Gratings: Theory and Numeric Applications, Second Revisited Edition (Institut Fresnel, 2014).

  • Johnson, K. C. Projection operator method for biperiodic diffraction gratings with anisotropic/bianisotropic generalizations. J. Opt. Soc. Am. A 31, 1698 (2014).

    ADS 
    MATH 

    Google Scholar
     

  • Hong, M., Dawkins, R. B., Bertoni, B., You, C. & Magaña-Loaiza, O. S. Nonclassical near-field dynamics of surface plasmons. Nat. Phys. 20, 830–835 (2024).

    CAS 
    MATH 

    Google Scholar
     

  • Lawrie, B. J., Evans, P. G. & Pooser, R. C. Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons. Phys. Rev. Lett. 110, 156802 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, X. F., Guo, G. P., Huang, Y. F., Li, C. F. & Guo, G. C. Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state. Europhys. Lett. 76, 753–759 (2006).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Machado, F., Rivera, N., Buljan, H., Soljačić, M. & Kaminer, I. Shaping polaritons to reshape selection rules. ACS Photon. 5, 3064–3072 (2018).

    CAS 
    MATH 

    Google Scholar
     

  • Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nat. Photon. 2, 748–753 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Spektor, G., David, A., Gjonaj, B., Bartal, G. & Orenstein, M. Metafocusing by a metaspiral plasmonic lens. Nano Lett. 15, 5739–5743 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kam, A. et al. Non-classical correlation between mode-entangled pairs of surface plasmon polaritons. In Proc. CLEO: Fundamental Science FF2C.5 (Optica Publishing Group, 2023).

  • Wright, W. E. Parallelization of Bresenham’s line and circle algorithms. IEEE Comput. Graph. Appl. 10, 60–67 (1990).

    MATH 

    Google Scholar
     

  • Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).

  • Ilin, Y. & Arad, I. Learning a quantum channel from its steady-state. New J. Phys. 26, 073003 (2024).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

    MATH 

    Google Scholar
     

  • Loredo, J. C. et al. Generation of non-classical light in a photon-number superposition. Nat. Photon. 13, 803–808 (2019).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006 (2017).

    ADS 
    MATH 

    Google Scholar
     

  • Reid, M. D. et al. The Einstein–Podolsky–Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments