Thursday, August 14, 2025
No menu items!
HomeNaturen-Type thermoelectric elastomers | Nature

n-Type thermoelectric elastomers | Nature

  • Hou, C. & Zhu, M. Semiconductors flex thermoelectric power. Science 377, 815–816 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Shi, X.-L., Zou, J. & Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399 (2020).

    PubMed 

    Google Scholar
     

  • Shi, X. & He, J. Thermopower and harvesting heat. Science 371, 343–344 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Jia, Y. et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 33, 2102990 (2021).


    Google Scholar
     

  • Bahk, J.-H., Fang, H., Yazawa, K. & Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3, 10362–10374 (2015).


    Google Scholar
     

  • Peng, J. et al. 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 10, 5590 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex. Electron. 2, 16 (2018).


    Google Scholar
     

  • Qin, B. et al. Moving fast makes for better cooling: optimizing carrier mobility with composition and processing is key for thermoelectric coolers. Science 378, 832–833 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Mallick, M. M. et al. High figure-of-merit telluride-based flexible thermoelectric films through interfacial modification via millisecond photonic-curing for fully printed thermoelectric generators. Adv. Sci. 9, 2202411 (2022).


    Google Scholar
     

  • Tian, Y. et al. Facile fabrication of flexible and high-performing thermoelectrics by direct laser printing on plastic foil. Adv. Mater. 36, 2307945 (2024).


    Google Scholar
     

  • Gao, H. et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67–73 (2021).

    ADS 

    Google Scholar
     

  • Feng, K., Guo, H., Sun, H. & Guo, X. N-type organic and polymeric semiconductors based on bithiophene imide derivatives. Acc. Chem. Res. 54, 3804–3817 (2021).

    PubMed 

    Google Scholar
     

  • Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Kim, N. et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 11, 1424 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tseng, C.-C. et al. Intrinsically stretchable organic thermoelectric polymers enabled by incorporating fused-ring conjugated breakers. Small 20, 2401966 (2024).


    Google Scholar
     

  • Wang, S., Zuo, G., Kim, J. & Sirringhaus, H. Progress of conjugated polymers as emerging thermoelectric materials. Prog. Polym. Sci. 129, 101548 (2022).


    Google Scholar
     

  • Yan, X. et al. Approaching disorder-tolerant semiconducting polymers. Nat. Commun. 12, 5723 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, Y., Tetik, H. & Malakooti, M. H. 3D soft architectures for stretchable thermoelectric wearables with electrical self-healing and damage tolerance. Adv. Mater. 36, 2407073 (2024).


    Google Scholar
     

  • Han, Y., Simonsen, L.-E. & Malakooti, M. H. Printing liquid metal elastomer composites for high-performance stretchable thermoelectric generators. Adv. Energy Mater. 12, 2201413 (2022).


    Google Scholar
     

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Anwar, O. et al. Hansen parameter evaluation for the characterization of titania photocatalysts using particle size distributions and combinatorics. Nanoscale 14, 13593–13607 (2022).

    PubMed 

    Google Scholar
     

  • Fernández-Rico, C. et al. Elastic microphase separation produces robust bicontinuous materials. Nat. Mater. 23, 124–130 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Lepage, M. L. et al. A broadly applicable cross-linker for aliphatic polymers containing C-H bonds. Science 366, 875–878 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Wu, H.-C. et al. A rapid and facile soft contact lamination method: Evaluation of polymer semiconductors for stretchable transistors. Chem. Mater. 26, 4544–4551 (2014).


    Google Scholar
     

  • Yang, C.-Y. et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat. Commun. 11, 3292 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, P., Oh, J. H., Dong, G. & Bao, Z. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132, 8852–8853 (2010).

    PubMed 

    Google Scholar
     

  • Liu, J. et al. Thermal conductivity and elastic constants of PEDOT:PSS with high electrical conductivity. Macromolecules 48, 585–591 (2015).

    ADS 

    Google Scholar
     

  • Brunetti, I., Dash, A., Scheunemann, D. & Kemerink, M. Is the field of organic thermoelectrics stuck? J. Mater. Res. 39, 1197–1206 (2024).

    ADS 

    Google Scholar
     

  • Wang, D. et al. Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 632, 528–535 (2024).

    PubMed 

    Google Scholar
     

  • Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Fan, Z., Du, D., Guan, X. & Ouyang, J. Polymer films with ultrahigh thermoelectric properties arising from significant Seebeck coefficient enhancement by ion accumulation on surface. Nano Energy 51, 481–488 (2018).


    Google Scholar
     

  • Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • He, H. et al. Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Sci. Adv. 8, eabq8160 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, H. et al. Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nat. Commun. 12, 2082 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X.-X. et al. High-mobility semiconducting polymers with different spin ground states. Nat. Commun. 13, 2258 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nan, K. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4, eaau5849 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, H. et al. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 88, 106260 (2021).


    Google Scholar
     

  • Tian, Y. & Molina-Lopez, F. Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy. Nanoscale 13, 5202–5215 (2021).

    PubMed 

    Google Scholar
     

  • Yu, Z.-D. et al. High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci. Adv. 9, eadf3495 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics. Angew. Chem. Int. Ed. 58, 11390–11394 (2019).


    Google Scholar
     

  • Liu, J. et al. N-type organic thermoelectrics: demonstration of ZT > 0.3. Nat. Commun. 11, 5694 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments