Sunday, November 24, 2024
No menu items!
HomeNatureMutant-selective AKT inhibition through lysine targeting and neo-zinc chelation

Mutant-selective AKT inhibition through lysine targeting and neo-zinc chelation

  • Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyman, D. M. et al. AKT inhibition in solid tumors with AKT1 mutations. J. Clin. Oncol. 35, 2251–2259 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalinsky, K. et al. Effect of capivasertib in patients with an AKT1 E17K-mutated tumor. JAMA Oncol. 7, 271 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kalinsky, K. et al. Ipatasertib in patients with tumors with AKT mutations: results from the NCI-MATCH ECOG-ACRIN trial (EAY131) sub-protocol Z1K. Eur. J. Cancer 174, S8–S9 (2022).

    Article 

    Google Scholar
     

  • Smyth, L. M. et al. Capivasertib, an AKT kinase inhibitor, as monotherapy or in combination with fulvestrant in patients with AKT1 E17K-mutant, ER-positive metastatic breast cancer. Clin. Cancer Res. 26, 3947–3957 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerji, U. et al. A phase I open-label study to identify a dosing regimen of the pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin. Cancer Res. 24, 2050–2059 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truebestein, L. et al. Structure of autoinhibited Akt1 reveals mechanism of PIP3-mediated activation. Proc. Natl Acad. Sci. USA 118, e2101496118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lučić, I. et al. Conformational sampling of membranes by Akt controls its activation and inactivation. Proc. Natl Acad. Sci. USA 115, E3940–E3949 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoxhaj, G. & Manning, B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landgraf, K. E., Pilling, C. & Falke, J. J. Molecular mechanism of an oncogenic mutation that alters membrane targeting: Glu17Lys modifies the PIP lipid specificity of the AKT1 PH domain. Biochemistry 47, 12260–12269 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bae, H. et al. PH domain-mediated autoinhibition and oncogenic activation of Akt. eLife 11, e80148 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudolph, M. et al. AKT1E17K mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection. BMC Cancer 16, 622 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, Y. et al. AKT1 pleckstrin homology domain E17K activating mutation in endometrial carcinoma. Gynecol. Oncol. 116, 88–91 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yesilöz, Ü. et al. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro. Oncol. 19, 1088–1096 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, V. E. et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339, 1077–1080 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varkaris, A. et al. Allosteric PI3Kα inhibition overcomes on-target resistance to orthosteric inhibitors mediated by secondary PIK3CA mutations. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-23-0704 (2023).

  • Lindhurst, M. J. et al. Ubiquitous expression of Akt1 p.(E17K) results in vascular defects and embryonic lethality in mice. Hum. Mol. Genet. 29, 3350–3360 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the proteus syndrome. N. Engl. J. Med. 365, 611 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, N. C. et al. Capivasertib in hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 388, 2058–2070 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dummler, B. et al. Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol. Cell. Biol. 26, 8042–8051 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, S. et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304, 1325–1328 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276, 38349–38352 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buzzi, F. et al. Differential effects of protein kinase B/Akt isoforms on glucose homeostasis and islet mass. Mol. Cell. Biol. 30, 601–612 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes Dev. 15, 2203–2208 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jänne, P. A. et al. Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation. N. Engl. J. Med. 387, 120–131 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lapierre, J. M. et al. Discovery of 3-(3-(4-(1-aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): an orally bioavailable, selective, and potent allosteric AKT inhibitor. J. Med. Chem. 59, 6455–6469 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Targeting AKT1-E17K and the PI3K/AKT pathway with an allosteric AKT inhibitor, ARQ 092. PLoS ONE 10, e0140479 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molina, D. M. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haffner, M. C. et al. Phenotypic characterization of two novel cell line models of castration‐resistant prostate cancer. Prostate 81, 1159–1171 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangai, T. et al. Biomarkers of response to Akt inhibitor MK-2206 in breast cancer. Clin. Cancer Res. 18, 5816–5828 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aoki, M., Batista, O., Bellacosa, A., Tsichlis, P. & Vogt, P. K. The Akt kinase: molecular determinants of oncogenicity. Proc. Natl. Acad. Sci. USA 95, 14950–14955 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacina, K. S. et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189–10194 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oshiro, N. et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282, 20329–20339 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasta, J. D. et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol. 25, 206–214 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamames, B., Sousa, S. F., Tamames, J., Fernandes, P. A. & Ramos, M. J. Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns. Proteins 69, 466–475 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leussing, D. L. & Leach, B. E. Stabilities, rates of formation, and rates of transimination in aqueous solutions of some zinc(II)-Schiff base complexes derived from salicylaldehyde. J. Am. Chem. Soc. 93, 3377–3384 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Laitaoja, M., Valjakka, J. & Jänis, J. Zinc coordination spheres in protein structures. Inorg. Chem. 52, 10983–10991 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruyneel, W., Charette, J. J. & De Hoffmann, E. Kinetics of hydrolysis of hydroxy and methoxy derivatives of N-benzylidene-2-aminopropane. J. Am. Chem. Soc. 88, 3808–3813 (1966).

    Article 
    CAS 

    Google Scholar
     

  • Arslan, P., Di Virgilio, F., Beltrame, M., Tsien, R. Y. & Pozzan, T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 260, 2719–2727 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuesta, A. & Taunton, J. Lysine-targeted inhibitors and chemoproteomic probes. Annu. Rev. Biochem. 88, 365–381 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Reversible lysine-targeted probes reveal residence time-based kinase selectivity. Nat. Chem. Biol. 18, 934–941 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katz, B. A. et al. Design of potent selective zinc-mediated serine protease inhibitors. Nature 391, 608–612 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. Lactate regulates cell cycle by remodelling the anaphase promoting complex. Nature 616, 790–797 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oksenberg, D. et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 175, 141–153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vichinsky, E. et al. A phase 3 randomized trial of voxelotor in sickle cell disease. N. Engl. J. Med. 381, 509–519 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods 14, 513–520 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol. Cell. Proteomics 20, 100077 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, B. R. et al. Tumors with AKT1E17K mutations are rational targets for single agent or combination therapy with AKT inhibitors. Mol. Cancer Ther. 14, 2441–2451 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabsch, W. XDS. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 125–132 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. Sect. D: Biol. Crystallogr. 69, 1204–1214 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 486–501 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 213–221 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments