Friday, September 5, 2025
No menu items!
HomeNatureMultiple overlapping binding sites determine transcription factor occupancy

Multiple overlapping binding sites determine transcription factor occupancy

  • Bulyk, M. L., Gentalen, E., Lockhart, D. J. & Church, G. M. Quantifying DNA–protein interactions by double-stranded DNA arrays. Nat. Biotechnol. 17, 573–577 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Mukherjee, S. et al. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat. Genet. 36, 1331–1339 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, M. F. et al. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429–1435 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, M. F. & Bulyk, M. L. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat. Protoc. 4, 393–411 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 20, 861–873 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Driever, W., Thoma, G. & Nüsslein-Volhard, C. Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340, 363–367 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaudet, J. & Mango, S. E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rowan, S. et al. Precise temporal control of the eye regulatory gene Pax6 via enhancer-binding site affinity. Genes Dev. 24, 980–985 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crocker, J. et al. Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160, 191–203 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Farley, E. K. et al. Suboptimization of developmental enhancers. Science 350, 325–328 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zandvakili, A., Campbell, I., Gutzwiller, L. M., Weirauch, M. T. & Gebelein, B. Degenerate Pax2 and Senseless binding motifs improve detection of low-affinity sites required for enhancer specificity. PLoS Genet. 14, e1007289 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanay, A. Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 16, 962–972 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535–540 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giorgetti, L. et al. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol. Cell 37, 418–428 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Horton, C. A. et al. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 381, eadd1250 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Lim, F. et al. Affinity-optimizing enhancer variants disrupt development. Nature 626, 151–159 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat. Protoc. 12, 1659–1672 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stormo, G. D., Zuo, Z. & Chang, Y. K. Spec-seq: determining protein-DNA-binding specificity by sequencing. Brief. Funct. Genom. 14, 30–38 (2015).

    CAS 

    Google Scholar
     

  • Fordyce, P. M. et al. De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat. Biotechnol. 28, 970–975 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isakova, A. et al. SMiLE-seq identifies binding motifs of single and dimeric transcription factors. Nat. Methods 14, 316–322 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Meng, X., Brodsky, M. H. & Wolfe, S. A. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat. Biotechnol. 23, 988–994 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stringham, J. L., Brown, A. S., Drewell, R. A. & Dresch, J. M. Flanking sequence context-dependent transcription factor binding in early Drosophila development. BMC Bioinformatics 14, 298 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levo, M. et al. Unraveling determinants of transcription factor binding outside the core binding site. Genome Res. 25, 1018–1029 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dror, I., Golan, T., Levy, C., Rohs, R. & Mandel-Gutfreund, Y. A widespread role of the motif environment in transcription factor binding across diverse protein families. Genome Res. 25, 1268–1280 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhari, H. G. & Cohen, B. A. Local sequence features that influence AP-1 cis-regulatory activity. Genome Res. 28, 171–181 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, D. M., Lim, H.-W., Won, K.-J. & Steger, D. J. Shared nucleotide flanks confer transcriptional competency to bZip core motifs. Nucleic Acids Res. 46, 8371–8384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le, D. D. et al. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding. Proc. Natl Acad. Sci. USA 115, E3702–E3711 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. G., Ling, E., Cowley, C. J., Greenberg, M. E. & Vierbuchen, T. Characterization of sequence determinants of enhancer function using natural genetic variation. eLife 11, e76500 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reiter, F., de Almeida, B. P. & Stark, A. Enhancers display constrained sequence flexibility and context-specific modulation of motif function. Genome Res. 33, 346–358 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudnizky, S. et al. Single-molecule DNA unzipping reveals asymmetric modulation of a transcription factor by its binding site sequence and context. Nucleic Acids Res. 46, 1513–1524 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gordân, R. et al. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape. Cell Rep. 3, 1093–1104 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aditham, A. K., Shimko, T. C. & Fordyce, P. M. BET-seq: binding energy topographies revealed by microfluidics and high-throughput sequencing. Methods Cell Biol. 148, 229–250 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, C. et al. True equilibrium measurement of transcription factor-DNA binding affinities using automated polarization microscopy. Nat. Commun. 9, 1605 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aditham, A. K., Markin, C. J., Mokhtari, D. A., DelRosso, N. & Fordyce, P. M. High-throughput affinity measurements of transcription factor and DNA mutations reveal affinity and specificity determinants. Cell Syst. 12, 112–127.e11 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Götzke, H. et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat. Commun. 10, 4403 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussey, B. J. & McMillen, D. R. Programmable T7-based synthetic transcription factors. Nucleic Acids Res. 46, 9842–9854 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geertz, M., Shore, D. & Maerkl, S. J. Massively parallel measurements of molecular interaction kinetics on a microfluidic platform. Proc. Natl Acad. Sci. USA 109, 16540–16545 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toko, H. et al. Csx/Nkx2-5 is required for homeostasis and survival of cardiac myocytes in the adult heart. J. Biol. Chem. 277, 24735–24743 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Moskowitz, I. P. G. et al. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131, 4107–4116 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. & O’Shea, E. K. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol. Cell 42, 826–836 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogawa, N. & Oshima, Y. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 2224–2236 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, M. & Davis, R. W. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61, 437–446 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Payne, J. L. & Wagner, A. The robustness and evolvability of transcription factor binding sites. Science 343, 875–877 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaeger, S. A. et al. Conservation and regulatory associations of a wide affinity range of mouse transcription factor binding sites. Genomics 95, 185–195 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rube, H. T. et al. Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning. Nat. Biotechnol. 40, 1520–1527 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheth, R. et al. Distal limb patterning requires modulation of cis-regulatory activities by HOX13. Cell Rep. 17, 2913–2926 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z. et al. EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nat. Commun. 10, 3892 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, D. J. et al. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat. Commun. 9, 1373 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ang, Y.-S. et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis. Cell 167, 1734–1749.e22 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexandari, A. M. et al. De novo distillation of thermodynamic affinity from deep learning regulatory sequence models of in vivo protein–DNA binding. Preprint at bioRxiv https://doi.org/10.1101/2023.05.11.540401 (2023).

  • Markstein, M., Markstein, P., Markstein, V. & Levine, M. S. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc. Natl Acad. Sci. USA 99, 763–768 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lifanov, A. P., Makeev, V. J., Nazina, A. G. & Papatsenko, D. A. Homotypic regulatory clusters in Drosophila. Genome Res. 13, 579–588 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotea, V. et al. Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res. 20, 565–577 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohs, R. et al. The role of DNA shape in protein–DNA recognition. Nature 461, 1248–1253 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J., Chiu, T.-P. & Rohs, R. Predicting DNA structure using a deep learning method. Nat. Commun. 15, 1243 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Masi, F. et al. Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants. Nucleic Acids Res. 39, 4553–4563 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grove, C. A. et al. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 138, 314–327 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Ho, T. D., Buchler, N. E. & Gordân, R. Competition for DNA binding between paralogous transcription factors determines their genomic occupancy and regulatory functions. Genome Res. 31, 1216–1229 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, J. et al. Systematic analysis of binding of transcription factors to noncoding variants. Nature 591, 147–151 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coetzee, S. G., Coetzee, G. A. & Hazelett, D. J. motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites. Bioinformatics 31, 3847–3849 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA 99, 7548–7553 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramov, S. et al. Landscape of allele-specific transcription factor binding in the human genome. Nat. Commun. 12, 2751 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tewhey, R. et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell 165, 1519–1529 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khetan, S. et al. Functional characterization of T2D-associated SNP effects on baseline and ER stress-responsive β cell transcriptional activation. Nat. Commun. 12, 5242 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abell, N. S. et al. Multiple causal variants underlie genetic associations in humans. Science 375, 1247–1254 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAfee, J. C. et al. Systematic investigation of allelic regulatory activity of schizophrenia-associated common variants. Cell Genom. 3, 100404 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newburger, D. E. & Bulyk, M. L. UniPROBE: an online database of protein binding microarray data on protein–DNA interactions. Nucleic Acids Res. 37, D77–D82 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Hume, M. A., Barrera, L. A., Gisselbrecht, S. S. & Bulyk, M. L. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein–DNA interactions. Nucleic Acids Res. 43, D117–D122 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Shahein, A. et al. Systematic analysis of low-affinity transcription factor binding site clusters in vitro and in vivo establishes their functional relevance. Nat. Commun. 13, 5273 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Y. et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356, eaaj2239 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riley, T. R. et al. SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol. Biol. 1196, 255–278 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammal, F., de Langen, P., Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of human, mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 50, D316–D325 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foulk, M. S., Urban, J. M., Casella, C. & Gerbi, S. A. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res. 25, 725–735 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hon, J., Martínek, T., Zendulka, J. & Lexa, M. pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 33, 3373–3379 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments