Saturday, October 19, 2024
No menu items!
HomeNatureMosquito taste responses to human and floral cues guide biting and feeding

Mosquito taste responses to human and floral cues guide biting and feeding

  • Baik, L. S. & Carlson, J. R. The mosquito taste system and disease control. Proc. Natl Acad. Sci. USA 117, 32848–32856 (2020).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).

    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Negl. Trop. Dis. 15, e0009063 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Coutinho-Abreu, I. V., Riffell, J. A. & Akbari, O. S. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol. 38, 246–264 (2022).


    Google Scholar
     

  • Syed, Z. & Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl Acad. Sci. USA 106, 18803–18808 (2009).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Greppi, C. et al. Mosquito heat seeking is driven by an ancestral cooling receptor. Science 367, 681–684 (2020).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Laursen, W. J. et al. Humidity sensors that alert mosquitoes to nearby hosts and egg-laying sites. Neuron 111, 874–887.e878 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • De Obaldia, M. E. et al. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell 185, 4099–4116.e4013 (2022).

    PubMed Central 

    Google Scholar
     

  • Corfas, R. A. & Vosshall, L. B. The cation channel TRPA1 tunes mosquito thermotaxis to host temperatures. eLife 4, e11750 (2015).

    PubMed Central 

    Google Scholar
     

  • Alonso San Alberto, D. et al. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat. Commun. 13, 555 (2022).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. Mosquito brains encode unique features of human odour to drive host seeking. Nature 605, 706–712 (2022).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • McMeniman, C. J., Corfas, R. A., Matthews, B. J., Ritchie, S. A. & Vosshall, L. B. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156, 1060–1071 (2014).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Vinauger, C. et al. Visual-olfactory integration in the human disease vector mosquito Aedes aegypti. Curr. Biol. 29, 2509–2516.e2505 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Lahondere, C. et al. The olfactory basis of orchid pollination by mosquitoes. Proc. Natl Acad. Sci. USA 117, 708–716 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Joseph, R. M. & Carlson, J. R. Drosophila chemoreceptors: A molecular interface between the chemical world and the brain. Trends Genet. 31, 683–695 (2015).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D. & Carlson, J. R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258–272 (2011).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Lacaille, F. et al. An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS ONE 2, e661 (2007).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Dweck, H. K. M. & Carlson, J. R. Diverse mechanisms of taste coding in Drosophila. Sci. Adv. 9, eadj7032 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Mustard, J. A. Neuroactive nectar: compounds in nectar that interact with neurons. Arthropod Plant Interact. 14, 151–159 (2020).


    Google Scholar
     

  • Afify, A. & Galizia, C. G. Chemosensory cues for mosquito oviposition site selection. J. Med. Entomol. 52, 120–130 (2015).

    CAS 

    Google Scholar
     

  • Matthews, B. J., Younger, M. A. & Vosshall, L. B. The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 8, e43963 (2019).

    PubMed Central 

    Google Scholar
     

  • Delgado-Povedano, M. M., Calderon-Santiago, M., Priego-Capote, F., & Luque de Castro, M. D. Study of sample preparation for quantitative analysis of amino acids in human sweat by liquid chromatography–tandem mass spectrometry. Talanta 146, 310–317 (2016).

    CAS 

    Google Scholar
     

  • Baker, L. B. & Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 120, 719–752 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Costa-da-Silva, A. L. Artificial membrane feeding mosquitoes in the laboratory with Glytube. Cold Spring Harb. Protoc. 2023, 108013 (2023).


    Google Scholar
     

  • Dunstan, R. H. et al. Sweat facilitated amino acid losses in male athletes during exercise at 32–34 degrees C. PLoS ONE 11, e0167844 (2016).

    PubMed Central 

    Google Scholar
     

  • Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med 47, 111–128 (2017).

    PubMed Central 

    Google Scholar
     

  • Attardo, G. M., Hansen, I. A., Shiao, S. H. & Raikhel, A. S. Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. J. Exp. Biol. 209, 3071–3078 (2006).

    CAS 

    Google Scholar
     

  • Xiao, S., Baik, L. S., Shang, X. & Carlson, J. R. Meeting a threat of the Anthropocene: taste avoidance of metal ions by Drosophila. Proc. Natl Acad. Sci. USA 119, e2204238119 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Hol, F. J., Lambrechts, L. & Prakash, M. BiteOscope, an open platform to study mosquito biting behavior. eLife 9, e56829 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Murray, G. P. D., Giraud, E. & Hol, F. J. H. Characterizing mosquito biting behavior using the BiteOscope. Cold Spring Harb. Protoc. 2023, 108176 (2023).


    Google Scholar
     

  • Wood, C. S., Harrison, G. A., Dore, C. & Weiner, J. S. Selective feeding of Anopheles gambiae according to ABO blood group status. Nature 239, 165 (1972).

    ADS 
    CAS 

    Google Scholar
     

  • Giraldo, D. et al. Human scent guides mosquito thermotaxis and host selection under naturalistic conditions. Curr. Biol. 33, 2367–2382 e2367 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. D. & Dahanukar, A. Recent advances in the genetic basis of taste detection in Drosophila. Cell. Mol. Life Sci. 77, 1087–1101 (2020).

    CAS 

    Google Scholar
     

  • Matthews, B. J., McBride, C. S., DeGennaro, M., Despo, O. & Vosshall, L. B. The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics 17, 32 (2016).

    PubMed Central 

    Google Scholar
     

  • Boyle, J. H. et al. A linkage-based genome assembly for the mosquito Aedes albopictus and identification of chromosomal regions affecting diapause. Insects 12, 167 (2021).

    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 11, e81703 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Alcaniz, J. A. et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 9, 4252 (2018).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Ganguly, A. et al. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep. 18, 737–750 (2017).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Croset, V., Schleyer, M., Arguello, J. R., Gerber, B. & Benton, R. A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci Rep. 6, 34871 (2016).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Jiao, Y., Moon, S. J., Wang, X., Ren, Q. & Montell, C. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol. 18, 1797–1801 (2008).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Dahanukar, A., Lei, Y. T., Kwon, J. Y. & Carlson, J. R. Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503–516 (2007).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Aryal, B., Dhakal, S., Shrestha, B. & Lee, Y. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr. Biol. 32, 1376–1386.e1374 (2022).

    CAS 

    Google Scholar
     

  • Jove, V. et al. Sensory discrimination of blood and floral nectar by Aedes aegypti mosquitoes. Neuron 108, 1163–1180.e1112 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Hussain, A. et al. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol. 14, e1002454 (2016).

    PubMed Central 

    Google Scholar
     

  • Min, S., Ai, M., Shin, S. A. & Suh, G. S. Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila. Proc. Natl Acad. Sci. USA 110, E1321–E1329 (2013).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Rimal, S. et al. Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep. 26, 1432–1442.e1434 (2019).

    PubMed Central 

    Google Scholar
     

  • Montell, C. Drosophila sensory receptors-a set of molecular Swiss Army knives. Genetics 217, 1–34 (2021).

    PubMed Central 

    Google Scholar
     

  • Melo, N. et al. The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr. Biol. 31, 1988–1994.e1985 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Leung, N. Y. & Montell, C. Unconventional roles of opsins. Annu. Rev. Cell Dev. Biol. 33, 241–264 (2017).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Kwon, H. W., Lu, T., Rutzler, M. & Zwiebel, L. J. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA 103, 13526–13531 (2006).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Saveer, A. M., Pitts, R. J., Ferguson, S. T. & Zwiebel, L. J. Characterization of chemosensory responses on the labellum of the malaria vector mosquito, Anopheles coluzzii. Sci Rep. 8, 5656 (2018).

    ADS 
    PubMed Central 

    Google Scholar
     

  • de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).


    Google Scholar
     

  • Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    CAS 

    Google Scholar
     

  • Cao, L. H. et al. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nat. Commun. 8, 1357 (2017).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Kessler, S., Vlimant, M. & Guerin, P. M. The sugar meal of the African malaria mosquito Anopheles gambiae and how deterrent compounds interfere with it: a behavioural and neurophysiological study. J. Exp. Biol. 216, 1292–1306 (2013).

    CAS 

    Google Scholar
     

  • French, A. S. et al. Dual mechanism for bitter avoidance in Drosophila. J. Neurosci. 35, 3990–4004 (2015).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Su, C. Y., Menuz, K., Reisert, J. & Carlson, J. R. Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492, 66–71 (2012).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Su, C. Y., Martelli, C., Emonet, T. & Carlson, J. R. Temporal coding of odor mixtures in an olfactory receptor neuron. Proc. Natl Acad. Sci. USA 108, 5075–5080 (2011).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).

    PubMed Central 

    Google Scholar
     

  • Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, P. V., Gonzalez, Audino, P. A. & Masuh, H. M. Oviposition behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in response to the presence of heterospecific and conspecific larvae. J. Med. Entomol. 53, 268–272 (2016).

    CAS 

    Google Scholar
     

  • Yoshioka, M. et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasit. Vectors 5, 225 (2012).

    PubMed Central 

    Google Scholar
     

  • Khan, Z., Bohman, B., Ignell, R. & Hill, S. R. Odour-mediated oviposition site selection in Aedes aegypti depends on aquatic stage and density. Parasit. Vectors 16, 264 (2023).

    PubMed Central 

    Google Scholar
     

  • Jove, V., Venkataraman, K., Gabel, T. M. & Duvall, L. B. Feeding and quantifying animal-derived blood and artificial meals in Aedes aegypti mosquitoes. J. Vis. Exp. https://doi.org/10.3791/61835 (2020).

    Article 

    Google Scholar
     

  • Matthews, B. J. et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563, 501–507 (2018).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments