Wednesday, February 4, 2026
No menu items!
HomeNatureMosquito–capsid interactions contribute to flavivirus vector specificity

Mosquito–capsid interactions contribute to flavivirus vector specificity

  • Pierson, T. C. & Diamond, M. S. The continued threat of emerging flaviviruses. Nat. Microbiol. 5, 796–812 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antiviral Res. 85, 328–345 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 67, 25–35 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lourenço-de-Oliveira, R. et al. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J. Gen. Virol. 99, 258–264 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • MacLeod, H. J. et al. Detailed analyses of Zika virus tropism in Culex quinquefasciatus reveal systemic refractoriness. mBio 11, 01765-20 (2020).

    Article 

    Google Scholar
     

  • Huang, G., Vergne, E. & Gubler, D. J. Failure of dengue viruses to replicate in Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 29, 911–914 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gould, E. A. & Solomon, T. Pathogenic flaviviruses. Lancet 371, 500–509 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nanfack Minkeu, F. & Vernick, K. D. A systematic review of the natural virome of Anopheles mosquitoes. Viruses 10, 222 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzman, M. G. et al. Dengue: a continuing global threat. Nat. Rev. Microbiol. 8, S7–S16 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lustig, Y., Sofer, D., Bucris, E. D. & Mendelson, E. Surveillance and diagnosis of West Nile virus in the face of flavivirus cross-reactivity. Front. Microbiol. 9, 2421 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikh, G. R., Oliver, J. D. & Bartholomay, L. C. A haemocyte tropism for an arbovirus. J. Gen. Virol. 90, 292–296 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franz, A. W., Kantor, A. M., Passarelli, A. L. & Clem, R. J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7, 3741–3767 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, G., Gao, X. & Gould, E. A. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg. Microbes Infect. 4, e18 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weaver, S. C., Scott, T. W. & Lorenz, L. H. Patterns of eastern equine encephalomyelitis virus infection in Culiseta melanura (Diptera: Culicidae). J. Med. Entomol. 27, 878–891 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gromowski, G. D., Barrett, N. D. & Barrett, A. D. Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J. Virol. 82, 8828–8837 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarker, A., Dhama, N. & Gupta, R. D. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front. Immunol. 14, 1200195 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, K. Y. et al. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus. BMC Microbiol. 14, 44 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. et al. Delineating antibody recognition against Zika virus during natural infection. JCI Insight 2, e93042 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, I. M. et al. Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. J. Virol. 83, 12101–12107 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, S. L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728–738 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerviel, A., Zhang, M. & Altan-Bonnet, N. A new infectious unit: extracellular vesicles carrying virus populations. Annu. Rev. Cell. Dev. Biol. 37, 171–197 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Catalano, M. & O’Driscoll, L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J. Extracell. Vesicles 9, 1703244 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 44, 649–688 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishikawa, T., Narita, K., Matsuyama, K. & Masuda, M. Dissemination of the Flavivirus subgenomic replicon genome and viral proteins by extracellular vesicles. Viruses 16, 524 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gestuveo, R. J. et al. Analysis of Zika virus capsid–Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat. Commun. 12, 2766 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol. Chem. 284, 34211–34222 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L. & Cui, F. Establishment and identification of a new cell line from Culex pipiens quinquefasciatus (Diptera: Culicidae). Acta Entomol. Sin. 61, 79–85 (2018).

    ADS 

    Google Scholar
     

  • Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, C. T. et al. Flavivirus capsid is a dimeric alpha-helical protein. J. Virol. 77, 7143–7149 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conway, M. J., Colpitts, T. M. & Fikrig, E. Role of the vector in arbovirus transmission. Annu. Rev. Virol. 1, 71–88 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat. Commun. 8, 1262 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, G. et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142, 714–725 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luna, C. et al. Expression of immune responsive genes in cell lines from two different Anopheline species. Insect Mol. Biol. 15, 721–729 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, Y. et al. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity 54, 2231–2244.e2236 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guidotti, G., Brambilla, L. & Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38, 406–424 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • York, S. B. et al. Zika virus hijacks extracellular vesicle tetraspanin pathways for cell-to-cell transmission. mSphere. 6, e0019221 (2021).

    Article 

    Google Scholar
     

  • Vora, A. et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc. Natl Acad. Sci. USA 115, E6604–E6613 (2018).

  • Zhou, W. et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 14, e1006764 (2018).

  • Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371 (2013).

  • Johnson, B. K. & Varma, M. G. Infection of the mosquito Aedes aegypti with infectious West Nile virus-antibody complexes. Trans. R. Soc. Trop. Med. Hyg. 69, 336–341 (1975).

  • Wu, L. et al. An evolutionarily conserved ubiquitin ligase drives infection and transmission of flaviviruses. Proc. Natl Acad. Sci. USA 121, e2317978121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. Neighboring mutation-mediated enhancement of dengue virus infectivity and spread. EMBO Rep. 23, e55671 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reed, L. J. & Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27, 493–497 (1938).

    Article 

    Google Scholar
     

  • Tassetto, M., Kunitomi, M. & Andino, R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169, 314–325.e313 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raddi, G. et al. Mosquito cellular immunity at single-cell resolution. Science 369, 1128–1132 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–977 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, H. et al. Cryo-EM structures of human p97 double hexamer capture potentiated ATPase-competent state. Cell Discov. 8, 19 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, X. et al. Zika virus replicons for drug discovery. eBioMedicine 12, 156–160 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Théry, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb0322s30 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 185, 3341–3355.e3313 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments