Pierson, T. C. & Diamond, M. S. The continued threat of emerging flaviviruses. Nat. Microbiol. 5, 796–812 (2020).
Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antiviral Res. 85, 328–345 (2010).
Leta, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 67, 25–35 (2018).
Lourenço-de-Oliveira, R. et al. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J. Gen. Virol. 99, 258–264 (2018).
MacLeod, H. J. et al. Detailed analyses of Zika virus tropism in Culex quinquefasciatus reveal systemic refractoriness. mBio 11, 01765-20 (2020).
Huang, G., Vergne, E. & Gubler, D. J. Failure of dengue viruses to replicate in Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 29, 911–914 (1992).
Gould, E. A. & Solomon, T. Pathogenic flaviviruses. Lancet 371, 500–509 (2008).
Nanfack Minkeu, F. & Vernick, K. D. A systematic review of the natural virome of Anopheles mosquitoes. Viruses 10, 222 (2018).
Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).
Guzman, M. G. et al. Dengue: a continuing global threat. Nat. Rev. Microbiol. 8, S7–S16 (2010).
Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).
Lustig, Y., Sofer, D., Bucris, E. D. & Mendelson, E. Surveillance and diagnosis of West Nile virus in the face of flavivirus cross-reactivity. Front. Microbiol. 9, 2421 (2018).
Parikh, G. R., Oliver, J. D. & Bartholomay, L. C. A haemocyte tropism for an arbovirus. J. Gen. Virol. 90, 292–296 (2009).
Franz, A. W., Kantor, A. M., Passarelli, A. L. & Clem, R. J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7, 3741–3767 (2015).
Liang, G., Gao, X. & Gould, E. A. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg. Microbes Infect. 4, e18 (2015).
Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).
Weaver, S. C., Scott, T. W. & Lorenz, L. H. Patterns of eastern equine encephalomyelitis virus infection in Culiseta melanura (Diptera: Culicidae). J. Med. Entomol. 27, 878–891 (1990).
Gromowski, G. D., Barrett, N. D. & Barrett, A. D. Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J. Virol. 82, 8828–8837 (2008).
Sarker, A., Dhama, N. & Gupta, R. D. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front. Immunol. 14, 1200195 (2023).
Song, K. Y. et al. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus. BMC Microbiol. 14, 44 (2014).
Yu, L. et al. Delineating antibody recognition against Zika virus during natural infection. JCI Insight 2, e93042 (2017).
Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).
Yu, I. M. et al. Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. J. Virol. 83, 12101–12107 (2009).
Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J. Virol. 75, 4268–4275 (2001).
Allison, S. L. et al. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J. Virol. 69, 695–700 (1995).
Bressanelli, S. et al. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 23, 728–738 (2004).
Kerviel, A., Zhang, M. & Altan-Bonnet, N. A new infectious unit: extracellular vesicles carrying virus populations. Annu. Rev. Cell. Dev. Biol. 37, 171–197 (2021).
Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).
Catalano, M. & O’Driscoll, L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J. Extracell. Vesicles 9, 1703244 (2020).
Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 44, 649–688 (1990).
Ishikawa, T., Narita, K., Matsuyama, K. & Masuda, M. Dissemination of the Flavivirus subgenomic replicon genome and viral proteins by extracellular vesicles. Viruses 16, 524 (2024).
Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123 (2012).
Gestuveo, R. J. et al. Analysis of Zika virus capsid–Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat. Commun. 12, 2766 (2021).
Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol. Chem. 284, 34211–34222 (2009).
Luo, L. & Cui, F. Establishment and identification of a new cell line from Culex pipiens quinquefasciatus (Diptera: Culicidae). Acta Entomol. Sin. 61, 79–85 (2018).
Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).
Jones, C. T. et al. Flavivirus capsid is a dimeric alpha-helical protein. J. Virol. 77, 7143–7149 (2003).
Conway, M. J., Colpitts, T. M. & Fikrig, E. Role of the vector in arbovirus transmission. Annu. Rev. Virol. 1, 71–88 (2014).
Zhu, Y. et al. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat. Commun. 8, 1262 (2017).
Cheng, G. et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142, 714–725 (2010).
Luna, C. et al. Expression of immune responsive genes in cell lines from two different Anopheline species. Insect Mol. Biol. 15, 721–729 (2006).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).
Fang, Y. et al. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity 54, 2231–2244.e2236 (2021).
Guidotti, G., Brambilla, L. & Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38, 406–424 (2017).
York, S. B. et al. Zika virus hijacks extracellular vesicle tetraspanin pathways for cell-to-cell transmission. mSphere. 6, e0019221 (2021).
Vora, A. et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc. Natl Acad. Sci. USA 115, E6604–E6613 (2018).
Zhou, W. et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 14, e1006764 (2018).
Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371 (2013).
Johnson, B. K. & Varma, M. G. Infection of the mosquito Aedes aegypti with infectious West Nile virus-antibody complexes. Trans. R. Soc. Trop. Med. Hyg. 69, 336–341 (1975).
Wu, L. et al. An evolutionarily conserved ubiquitin ligase drives infection and transmission of flaviviruses. Proc. Natl Acad. Sci. USA 121, e2317978121 (2024).
Chen, L. et al. Neighboring mutation-mediated enhancement of dengue virus infectivity and spread. EMBO Rep. 23, e55671 (2022).
Reed, L. J. & Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27, 493–497 (1938).
Tassetto, M., Kunitomi, M. & Andino, R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169, 314–325.e313 (2017).
Raddi, G. et al. Mosquito cellular immunity at single-cell resolution. Science 369, 1128–1132 (2020).
Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–977 (2016).
Gao, H. et al. Cryo-EM structures of human p97 double hexamer capture potentiated ATPase-competent state. Cell Discov. 8, 19 (2022).
Xie, X. et al. Zika virus replicons for drug discovery. eBioMedicine 12, 156–160 (2016).
Théry, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb0322s30 (2006).
Liu, L. et al. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 185, 3341–3355.e3313 (2022).

