Thursday, August 21, 2025
No menu items!
HomeNatureMolecular mechanism of ultrafast transport by plasma membrane Ca2+-ATPases

Molecular mechanism of ultrafast transport by plasma membrane Ca2+-ATPases

  • Luan, S. & Wang, C. Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 37, 311–340 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Stock, C. et al. Fast-forward on P-type ATPases: recent advances on structure and function. Biochem. Soc. Trans. 51, 1347–1360 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat. Genet. 3, 7–13 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Jacobsen, N. J. et al. ATP2A2 mutations in Darier’s disease and their relationship to neuropsychiatric phenotypes. Hum. Mol. Genet. 8, 1631–1636 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Odermatt, A. et al. The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) and is associated with Brody disease. Hum. Genet. 106, 482–491 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Sudbrak, R. et al. Hailey-Hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump. Hum. Mol. Genet. 9, 1131–1140 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196 (2003).

    PubMed 

    Google Scholar
     

  • de Carvalho Aguiar, P. et al. Mutations in the Na+/K+-ATPase α3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43, 169–175 (2004).

    PubMed 

    Google Scholar
     

  • Brini, M. et al. Plasma-membrane calcium pumps and hereditary deafness. Biochem. Soc. Trans. 35, 913–918 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwinger, R. H., Bundgaard, H., Muller-Ehmsen, J. & Kjeldsen, K. The Na, K-ATPase in the failing human heart. Cardiovasc. Res. 57, 913–920 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Schubert, M. L. & Peura, D. A. Control of gastric acid secretion in health and disease. Gastroenterology 134, 1842–1860 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Dyla, M., Basse Hansen, S., Nissen, P. & Kjaergaard, M. Structural dynamics of P-type ATPase ion pumps. Biochem. Soc. Trans. 47, 1247–1257 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Albers, R. W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967).

    CAS 
    PubMed 

    Google Scholar
     

  • Moller, J. V., Olesen, C., Winther, A. M. & Nissen, P. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q. Rev. Biophys. 43, 501–566 (2010).

    PubMed 

    Google Scholar
     

  • Wu, M. et al. Structure and transport mechanism of the human calcium pump SPCA1. Cell Res. 33, 533–545 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, D. et al. Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nat. Commun. 9, 3623 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Constantin, C. E. et al. Ca2+-pumping by PMCA-Neuroplastin complexes operates in the kiloHertz-range. Nat. Commun. https://doi.org/10.1038/s41467-025-62735-5 (2025).

  • Schmidt, N. et al. Neuroplastin and basigin are essential auxiliary subunits of plasma membrane Ca2+-ATPases and key regulators of Ca2+ clearance. Neuron 96, 827–838.e9 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Niggli, V., Adunyah, E. S. & Carafoli, E. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. J. Biol. Chem. 256, 8588–8592 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • Missiaen, L., Wuytack, F., Raeymaekers, L., De Smedt, H. & Casteels, R. Polyamines and neomycin inhibit the purified plasma-membrane Ca2+ pump by interacting with associated polyphosphoinositides. Biochem. J. 261, 1055–1058 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peinelt, C. & Apell, H. J. Time-resolved charge movements in the sarcoplasmatic reticulum Ca-ATPase. Biophys. J. 86, 815–824 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dode, L. et al. Dissection of the functional differences between human secretory pathway Ca2+/Mn2+-ATPase (SPCA) 1 and 2 isoenzymes by steady-state and transient kinetic analyses. J. Biol. Chem. 281, 3182–3189 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Liang, M. et al. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 282, 10585–10593 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Schultz, J. M. et al. Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N. Engl. J. Med. 352, 1557–1564 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Ficarella, R. et al. A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc. Natl Acad. Sci. USA 104, 1516–1521 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabashima, Y., Ogawa, H., Nakajima, R. & Toyoshima, C. What ATP binding does to the Ca2+ pump and how nonproductive phosphoryl transfer is prevented in the absence of Ca2. Proc. Natl Acad. Sci. USA 117, 18448–18458 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mintz, E., Mata, A. M., Forge, V., Passafiume, M. & Guillain, F. The modulation of Ca2+ binding to sarcoplasmic reticulum ATPase by ATP analogues is pH-dependent. J. Biol. Chem. 270, 27160–27164 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Winther, A. M. et al. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495, 265–269 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beesley, P. W., Herrera-Molina, R., Smalla, K. H. & Seidenbecher, C. The neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function. J. Neurochem. 131, 268–283 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Rathod, N. et al. Nothing regular about the regulins: distinct functional properties of SERCA transmembrane peptide regulatory subunits. Int. J. Mol. Sci. 22, 8891 (2021).

  • Boudkkazi, S. et al. A noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 111, 2544–2556.e9 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Cryo-EM structures of human SPCA1a reveal the mechanism of Ca2+/Mn2+ transport into the Golgi apparatus. Sci. Adv. 9, eadd9742 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, S. B. et al. The crystal structure of the Ca2+-ATPase 1 from Listeria monocytogenes reveals a pump primed for dephosphorylation. J. Mol. Biol. 433, 167015 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Multiple sub-state structures of SERCA2b reveal conformational overlap at transition steps during the catalytic cycle. Cell Rep. 41, 111760 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Roderer, D., Schubert, E., Sitsel, O. & Raunser, S. Towards the application of Tc toxins as a universal protein translocation system. Nat. Commun. 10, 5263 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Inesi, G., Kurzmack, M., Coan, C. & Lewis, D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J. Biol. Chem. 255, 3025–3031 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, K. & Kitamura, K. A point mutation in a plasma membrane Ca2+-ATPase gene causes deafness in Wriggle mouse Sagami. Biochem. Biophys. Res. Commun. 261, 773–778 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Toyoshima, C. et al. Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495, 260–264 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Espinoza-Fonseca, L. M. The Ca2+-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum. Mol. Biosyst. 13, 633–637 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bublitz, M. et al. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 288, 10759–10765 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, S. et al. Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones. eLife 9, e62816 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiden, S. L. et al. The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet. 4, e1000238 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahimi, M. J. et al. De novo variants in ATP2B1 lead to neurodevelopmental delay. Am. J. Hum. Genet. 109, 944–952 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choquette, D. et al. Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem. Biophys. Res. Commun. 125, 908–915 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, H. et al. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 105, 7970–7975 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sehgal, P. et al. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 292, 19656–19673 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Espinoza-Fonseca, L. M., Autry, J. M., Ramirez-Salinas, G. L. & Thomas, D. D. Atomic-level mechanisms for phospholamban regulation of the calcium pump. Biophys. J. 108, 1697–1708 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driggers, C. M., Kuo, Y. Y., Zhu, P., ElSheikh, A. & Shyng, S. L. Structure of an open KATP channel reveals tandem PIP2 binding sites mediating the Kir6.2 and SUR1 regulatory interface. Nat. Commun. 15, 2502 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, S., Yao, X. & Yan, N. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature 596, 143–147 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, S. B., Tao, X. & MacKinnon, R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Structural insights into the conformational changes of BTR1/SLC4A11 in complex with PIP2. Nat. Commun. 14, 6157 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. & MacKinnon, R. Structural basis of human KCNQ1 modulation and gating. Cell 180, 340–347.e9 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Yin, Y. et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2. Science 378, eadd1268 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Structural and functional insights into the lipid regulation of human anion exchanger 2. Nat. Commun. 15, 759 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindner, P., Christensen, S. B., Nissen, P., Moller, J. V. & Engedal, N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Commun. Signal. 18, 12 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denmeade, S. R. et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl Cancer Inst. 95, 990–1000 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Denmeade, S. R. et al. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci. Transl. Med. 4, 140ra186 (2012).


    Google Scholar
     

  • Quynh Doan, N. T. & Christensen, S. B. Thapsigargin, origin, chemistry, structure–activity relationships and prodrug development. Curr. Pharm. Des. 21, 5501–5517 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabata, S. et al. Electron microscopic detection of single membrane proteins by a specific chemical labeling. iScience 22, 256–268 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, L. F. R. & Dall, P. M. Concurrent agreement between ActiGraph® and activPAL® in measuring moderate to vigorous intensity physical activity for adults. Med. Eng. Phys. 74, 82–88 (2019).

    PubMed 

    Google Scholar
     

  • Drake, J. C., Allegra, C. J., Curt, G. A. & Chabner, B. A. Competitive protein-binding assay for trimetrexate. Cancer Treat. Rep. 69, 641–644 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Schulte, U. et al. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 614, 153–159 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stabrin, M. et al. TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM. Nat. Commun. 11, 5716 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J. & Penczek, P. A. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20, 237–247 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriya, T. et al. High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J. Vis. Exp. https://doi.org/10.3791/55448 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

  • Pettersen, E. F. et al. UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, S. et al. Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nat. Commun. 12, 1240 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Krissinel, E. Crystal contacts as nature’s docking solutions. J. Comput. Chem. 31, 133–143 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • de Vries, S. J. et al. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69, 726–733 (2007).

    PubMed 

    Google Scholar
     

  • Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Sondergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments