Friday, June 13, 2025
No menu items!
HomeNatureMolecular hydrogen in the extremely metal- and dust-poor galaxy Leo P

Molecular hydrogen in the extremely metal- and dust-poor galaxy Leo P

  • Labbé, I. et al. A population of red candidate massive galaxies ~600 Myr after the Big Bang. Nature 616, 266–269 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 7, 731–735 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carniani, S. et al. Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature 633, 318–322 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glover, S. C. O. & Clark, P. C. Star formation in metal-poor gas clouds. Mon. Not. R. Astron. Soc. 426, 377–388 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krumholz, M. R. Star formation in atomic gas. Astrophys. J. 759, 9 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Schinnerer, E. & Leroy, A. K. Molecular gas and the star-formation process on cloud scales in nearby galaxies. Annu. Rev. Astron. Astrophys. 62, 369–436 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Warren, S. R. et al. CARMA CO observations of three extremely metal-poor, star-forming galaxies. Astrophys. J. 814, 30 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shi, Y. et al. Oversized gas clumps in an extremely metal-poor molecular cloud revealed by ALMA’s parsec-scale maps. Astrophys. J. 892, 147 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Skillman, E. D. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. III. An extremely metal deficient galaxy. Astron. J. 146, 3 (2013).

    Article 
    ADS 

    Google Scholar
     

  • McQuinn, K. B. W. et al. Leo P: an unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bolatto, A. D. et al. The state of the gas and the relation between gas and star formation at low metallicity: the Small Magellanic Cloud. Astrophys. J. 741, 12 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Leroy, A. K. et al. Molecular gas and star formation in nearby disk galaxies. Astron. J. 146, 19 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, D. A., Elmegreen, B. G. & Madden, S. C. The interstellar medium in dwarf irregular galaxies. Annu. Rev. Astron. Astrophys. 62, 113–155 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Maloney, P. & Black, J. H. ICO/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies. Astrophys. J. 325, 389–401 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wolfire, M. G., Hollenbach, D. & McKee, C. F. The dark molecular gas. Astrophys. J. 716, 1191–1207 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bisbas, T. G., Tan, J. C. & Tanaka, K. E. I. Photodissociation region diagnostics across galactic environments. Mon. Not. R. Astron. Soc. 502, 2701–2732 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, C.-Y., Sternberg, A. & van Dishoeck, E. F. Metallicity dependence of the H/H2 and C+/C/CO distributions in a resolved self-regulating interstellar medium. Astrophys. J. 920, 44 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, C.-Y., Schruba, A., Sternberg, A. & van Dishoeck, E. F. Dependence of XCO on metallicity, intensity, and spatial scale in a self-regulated interstellar medium. Astrophys. J. 931, 28 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bialy, S. & Sternberg, A. CO/H2, C/CO, OH/CO, and OH/O2 in dense interstellar gas: from high ionization to low metallicity. Mon. Not. R. Astron. Soc. 450, 4424–4445 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bialy, S. & Sternberg, A. Thermal phases of the neutral atomic interstellar medium from solar metallicity to primordial gas. Astrophys. J. 881, 160 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roussel, H. et al. Warm molecular hydrogen in the Spitzer SINGS galaxy sample. Astrophys. J. 669, 959–981 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Togi, A. & Smith, J. D. T. Lighting the dark molecular gas: H2 as a direct tracer. Astrophys. J. 830, 18 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hunt, L. K., Thuan, T. X., Izotov, Y. I. & Sauvage, M. The Spitzer view of low-metallicity star formation. III. Fine-structure lines, aromatic features, and molecules. Astrophys. J. 712, 164–187 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naslim, N. et al. Molecular hydrogen emission in the interstellar medium of the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 446, 2490–2504 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McQuinn, K. B. W. et al. The Leoncino dwarf galaxy: exploring the low-metallicity end of the luminosity–metallicity and mass–metallicity relations. Astrophys. J. 891, 181 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rubio, M. et al. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM. Nature 525, 218–221 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, C. J. et al. First stellar spectroscopy in Leo P. Astron. Astrophys. 622, A129 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Telford, O. G., Chisholm, J., McQuinn, K. B. W. & Berg, D. A. Far-ultraviolet spectra of main-sequence O stars at extremely low metallicity. Astrophys. J. 922, 191 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Telford, O. G., McQuinn, K. B. W., Chisholm, J. & Berg, D. A. The ionizing spectra of extremely metal-poor O stars: constraints from the only H ii region in Leo P. Astrophys. J. 943, 65 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Telford, O. G. et al. Observations of extremely metal-poor O stars: weak winds and constraints for evolution models. Astrophys. J. 974, 85 (2024).

    Article 
    CAS 

    Google Scholar
     

  • McQuinn, K. B. W. et al. The ancient star formation history of the extremely low-mass galaxy Leo P: an emerging trend of a post-reionization pause in star formation. Astrophys. J. 976, 60 (2024).

    Article 

    Google Scholar
     

  • Aloisi, A. et al. I Zw 18 revisited with HST ACS and Cepheids: new distance and age. Astrophys. J. Lett. 667, L151–L154 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Izotov, Y. I. et al. SBS 0335-052, a probable nearby young dwarf galaxy: evidence pro and con. Astrophys. J. 476, 698–711 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giovanelli, R. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. I. H i observations. Astron. J. 146, 15 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Bernstein-Cooper, E. Z. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. V. Neutral gas dynamics and kinematics. Astron. J. 148, 35 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Shi, Y. et al. Carbon monoxide in an extremely metal-poor galaxy. Nat. Commun. 7, 13789 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKee, C. F. & Ostriker, E. C. Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Topping, M. W. et al. Searching for extremely blue UV continuum slopes at z = 7–11 in JWST/NIRCam imaging: implications for stellar metallicity and ionizing photon escape in early galaxies. Astrophys. J. 941, 153 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Atek, H. et al. Most of the photons that reionized the Universe came from dwarf galaxies. Nature 626, 975–978 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2025).

  • Spilker, J. S. et al. Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy. Nature 618, 708–711 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Argyriou, I. et al. JWST MIRI flight performance: the Medium-Resolution Spectrometer. Astron. Astrophys. 675, A111 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Law, D. R. et al. A 3D drizzle algorithm for JWST and practical application to the MIRI Medium Resolution Spectrometer. Astron. J. 166, 45 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Burton, M. G., Hollenbach, D. J. & Tielens, A. G. G. Mid-infrared rotational line emission from interstellar molecular hydrogen. Astrophys. J. 399, 563–572 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roueff, E. et al. The full infrared spectrum of molecular hydrogen. Astron. Astrophys. 630, A58 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Herbst, T. M. et al. A near-infrared spectral imaging study of T Tau. Astron. J. 111, 2403 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hunter, G. H., Clark, P. C., Glover, S. C. O. & Klessen, R. S. Towards the impact of GMC collisions on the star formation rate. Mon. Not. R. Astron. Soc. 519, 4152–4170 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gong, M., Ostriker, E. C. & Wolfire, M. G. A simple and accurate network for hydrogen and carbon chemistry in the interstellar medium. Astrophys. J. 843, 38 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Habing, H. J. The interstellar radiation density between 912 A and 2400 A. Bull. Astron. Inst. Neth. 19, 421 (1968).

    ADS 

    Google Scholar
     

  • Sembach, K. R., Howk, J. C., Ryans, R. S. I. & Keenan, F. P. Modeling the warm ionized interstellar medium and its impact on elemental abundance studies. Astrophys. J. 528, 310–324 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bakes, E. L. O. & Tielens, A. G. G. M. The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons. Astrophys. J. 427, 822 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wolfire, M. G., McKee, C. F., Hollenbach, D. & Tielens, A. G. G. M. Neutral atomic phases of the interstellar medium in the galaxy. Astrophys. J. 587, 278–311 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rémy-Ruyer, A. et al. Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range. Astron. Astrophys. 563, A31 (2014).

    Article 

    Google Scholar
     

  • Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Engelbracht, C. W. et al. Metallicity effects on dust properties in starbursting galaxies. Astrophys. J. 678, 804–827 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Whitcomb, C. M. et al. The metallicity dependence of PAH emission in galaxies. I. Insights from deep radial Spitzer spectroscopy. Astrophys. J. 974, 20 (2024).

    Article 

    Google Scholar
     

  • Hu, C.-Y., Sternberg, A. & van Dishoeck, E. F. Coevolution of dust and chemistry in galaxy simulations with a resolved interstellar medium. Astrophys. J. 952, 140 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Girichidis, P. et al. Physical processes in star formation. Space Sci. Rev. 216, 68 (2020).

    Article 
    ADS 

    Google Scholar
     

  • CASA Team et al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schruba, A. et al. A molecular star formation law in the atomic-gas-dominated regime in nearby galaxies. Astron. J. 142, 37 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Schruba, A. et al. Low CO luminosities in dwarf galaxies. Astron. J. 143, 138 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Grenier, I. A., Casandjian, J.-M. & Terrier, R. Unveiling extensive clouds of dark gas in the solar neighborhood. Science 307, 1292–1295 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jameson, K. E. et al. First results from the Herschel and ALMA spectroscopic surveys of the SMC: the relationship between [C ii]-bright gas and CO-bright gas at low metallicity. Astrophys. J. 853, 111 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Madden, S. C. et al. Tracing the total molecular gas in galaxies: [CII] and the CO-dark gas. Astron. Astrophys. 643, A141 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article 

    Google Scholar
     

  • Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Aver, E. et al. A comprehensive chemical abundance analysis of the extremely metal poor Leoncino Dwarf galaxy (AGC 198691). Mon. Not. R. Astron. Soc. 510, 373–382 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

    Article 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joye, W. A. & Mandel, E. New features of SAOImage DS9. In Astronomical Data Analysis Software and Systems XII, Astronomical Society of the Pacific Conference Series, Vol. 295 (eds Payne, H. E., Jedrzejewski, R. I. & Hook, R. N.) 489 (ASP, 2003).

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginsburg, A. et al. radio-astro-tools/spectral-cube: v0.4.4. Zenodo https://doi.org/10.5281/zenodo.591639 (2019).

  • RELATED ARTICLES

    Most Popular

    Recent Comments