Saturday, July 12, 2025
No menu items!
HomeNatureMoiré materials based on M-point twisting

Moiré materials based on M-point twisting

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 

    Google Scholar
     

  • Angeli, M. & MacDonald, A. H. Γ valley transition metal dichalcogenide moiré bands. Proc. Natl Acad. Sci. 118, e2021826118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claassen, M., Xian, L., Kennes, D. M. & Rubio, A. Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers. Nat. Commun. 13, 4915 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. 108, 12233–12237 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological Insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    ADS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, Y.-Z. & Das Sarma, S. Kondo lattice model in magic-angle twisted bilayer graphene. Phys. Rev. Lett. 131, 026501 (2023).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 616, 61–65 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Sheng, D. N., Reddy, A. P., Abouelkomsan, A., Bergholtz, E. J. & Fu, L. Quantum anomalous Hall crystal at fractional filling of moiré superlattices. Phys. Rev. Lett. 133, 066601 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, Y. et al. Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2. Phys. Rev. B 109, 205121 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2. Phys. Rev. B 109, 045147 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Z., Patri, A. S. & Senthil, T. Theory of quantum anomalous Hall phases in pentalayer rhombohedral graphene Moiré structures. Phys. Rev. Lett. 133, 206502 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J. et al. Anomalous Hall crystals in rhombohedral multilayer graphene. I. Interaction-driven Chern bands and fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 133, 206503 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Herzog-Arbeitman, J. et al. Moiré fractional Chern insulators. II. First-principles calculations and continuum models of rhombohedral graphene superlattices. Phys. Rev. B 109, 205122 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. 2D theoretically twistable material database. Preprint at https://arxiv.org/abs/2411.09741 (2024).

  • de la Flor, G., Souvignier, B., Madariaga, G. & Aroyo, M. I. Layer groups: Brillouin-zone and crystallographic databases on the Bilbao Crystallographic Server. Acta Crystallogr. A 77, 559–571 (2021).


    Google Scholar
     

  • Chen, Z. Y., Yang, S. A. & Zhao, Y. X. Brillouin Klein bottle from artificial gauge fields. Nat. Commun. 13, 2215 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Chen, Z. Y., Zhang, Z. & Zhao, Y. X. General theory of momentum-space nonsymmorphic symmetry. Phys. Rev. Lett. 130, 256601 (2023).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z.-D. Spin space groups: full classification and applications. Phys. Rev. X 14, 031037 (2024).

    CAS 

    Google Scholar
     

  • Fonseca, A. G. et al. Weyl points on nonorientable manifolds. Phys. Rev. Lett. 132, 266601 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Kennes, D. M., Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 11, 1124 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Jung, J., Raoux, A., Qiao, Z. & MacDonald, A. H. Ab initio theory of moiré superlattice bands in layered two-dimensional materials. Phys. Rev. B 89, 205414 (2014).

    ADS 

    Google Scholar
     

  • Herzog-Arbeitman, J., Song, Z.-D., Elcoro, L. & Bernevig, B. A. Hofstadter topology with real space invariants and reentrant projective symmetries. Phys. Rev. Lett. 130, 236601 (2023).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Petralanda, U., Jiang, Y., Bernevig, B. A., Regnault, N. & Elcoro, L., Two-dimensional topological quantum chemistry and catalog of topological materials. Preprint at https://arxiv.org/abs/2411.08950 (2024).

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Z., Herzog-Arbeitman, J., Bernevig, B. A. & Kivelson, S. A. “Quantum geometric nesting” and solvable model flat-band systems. Phys. Rev. X 14, 041004 (2024).

    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Ozaki, T. Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003).

  • Ozaki, T. & Kino, H. Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 69, 195113 (2004).

  • Ozaki, T. & Kino, H. Efficient projector expansion for the ab initio LCAO method. Phys. Rev. B 72, 045121 (2005).

  • Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

  • Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Fang, Z., Weng, H. & Wu, Q., DPmoire: a tool for constructing accurate machine learning force fields in moiré systems. Preprint at https://arxiv.org/abs/2412.19333 (2025).

  • Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Busch, C., Fröhlich, C. & Hulliger, F. Struktur, elektrische und thermoelektrische Eigenschaften von SnSe2. Helv. Phys. Acta 34, 359–368 (1961).

    CAS 

    Google Scholar
     

  • Su, Y., Ebrish, M. A., Olson, E. J. & Koester, S. J. SnSe2 field-effect transistors with high drive current. Appl. Phys. Lett. 103, 263104 (2013).

    ADS 

    Google Scholar
     

  • Zeng, J. et al. Gate-induced interfacial superconductivity in 1T-SnSe2. Nano Lett. 18, 1410–1415 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Spacing dependent and cation doping independent superconductivity in intercalated 1T 2D SnSe2. 2D Mater. 6, 045048 (2019).

    CAS 

    Google Scholar
     

  • Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, H. Y., Lu, W. J., Shao, D. F., Lu, H. Y. & Sun, Y. P. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C 4, 4538–4545 (2016).

    CAS 

    Google Scholar
     

  • Mañas-Valero, S., García-López, V., Cantarero, A. & Galbiati, M. Raman Spectra of ZrS2 and ZrSe2 from bulk to atomically thin layers. Appl. Sci. 6, 264 (2016).


    Google Scholar
     

  • Alsulami, A. et al. Lattice transformation from 2D to quasi 1D and phonon properties of exfoliated ZrS2 and ZrSe2. Small 19, 2205763 (2023).

    CAS 

    Google Scholar
     

  • Xia, C. et al. The characteristics of n- and p-type dopants in SnS2 monolayer nanosheets. Phys. Chem. Chem. Phys. 16, 19674–19680 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, F. et al. Mechanically exfoliated few-layer SnS2 and integrated van der Waals electrodes for ultrahigh responsivity phototransistors. ACS Appl. Electron. Mater. 4, 5333–5339 (2022).

    CAS 

    Google Scholar
     

  • Kang, M. et al. Electrical characterization of multilayer HfSe2 field-effect transistors on SiO2 substrate. Appl. Phys. Lett. 106, 143108 (2015).

    ADS 

    Google Scholar
     

  • Zhao, X., Xia, C., Wang, T., Dai, X. & Yang, L. Characteristics of n- and p-type dopants in 1T-HfS2 monolayer. J. Alloys Compd. 689, 302–306 (2016).

    CAS 

    Google Scholar
     

  • Wu, N. et al. Strain effect on the electronic properties of 1T-HfS2 monolayer. Physica E 93, 1–5 (2017).

    ADS 

    Google Scholar
     

  • Singh, D. & Ahuja, R. Enhanced optoelectronic and thermoelectric properties by intrinsic structural defects in monolayer HfS2. ACS Appl. Energy Mater. 2, 6891–6903 (2019).

    CAS 

    Google Scholar
     

  • Zhao, Q. et al. Thickness-induced structural phase transformation of layered gallium telluride. Phys. Chem. Chem. Phys. 18, 18719–18726 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kariyado, T. & Vishwanath, A. Flat band in twisted bilayer Bravais lattices. Phys. Rev. Res. 1, 033076 (2019).

    CAS 

    Google Scholar
     

  • Kariyado, T. Twisted bilayer BC3: valley interlocked anisotropic flat bands. Phys. Rev. B 107, 085127 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Fujimoto, M., Kawakami, T. & Koshino, M. Perfect one-dimensional interface states in a twisted stack of three-dimensional topological insulators. Phys. Rev. Res. 4, 043209 (2022).

    CAS 

    Google Scholar
     

  • Lei, C., Mahon, P. T. & MacDonald, A. H., Moiré band theory for M-valley twisted transition metal dichalcogenides. Preprint at https://arxiv.org/abs/2411.18828 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments