Wednesday, January 22, 2025
No menu items!
HomeNatureMoiré-driven topological electronic crystals in twisted graphene

Moiré-driven topological electronic crystals in twisted graphene

  • Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002 (1934).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Grimes, C. C. & Adams, G. Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys. Rev. Lett. 42, 795 (1979).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Andrei, E. Y. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dong, Z., Patri, A. S. & Senthil, T. Theory of quantum anomalous Hall phases in pentalayer rhombohedral graphene moiré structures. Phys. Rev. Lett. 133, 206502 (2024).

  • Zhou, B., Yang, H. & Zhang, Y.-H. Fractional quantum anomalous Hall effect in rhombohedral multilayer graphene in the moiréless limit. Phys. Rev. Lett. 133, 206504 (2024).

  • Dong, J. et al. Anomalous Hall crystals in rhombohedral multilayer graphene. I: Interaction-driven Chern bands and fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 133, 206503 (2024).

  • Kwan, Y. H. et al. Moiré fractional Chern insulators III: Hartree-Fock phase diagram, magic angle regime for Chern insulator states, the role of the moiré potential and Goldstone gaps in rhombohedral graphene superlattices. Preprint at https://arxiv.org/abs/2312.11617 (2023).

  • Sheng, D. N., Reddy, A. P., Abouelkomsan, A., Bergholtz, E. J. & Fu, L. Quantum anomalous hall crystal at fractional filling of moiré superlattices. Phys. Rev. Lett. 133, 066601 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, T. & Devakul, T. Parent Berry curvature and the ideal anomalous Hall crystal. Phys. Rev. X 14, 041040 (2024).

  • Soejima, T. et al. Anomalous Hall crystals in rhombohedral multilayer graphene. II: General mechanism and a minimal model. Phys. Rev. B 110, 205124 (2024).

  • Dong, Z., Patri, A. S. & Senthil, T. Stability of anomalous Hall crystals in multilayer rhombohedral graphene. Phys. Rev. B 110, 205130 (2024).

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Stepanov, P. et al. Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Phys. Rev. Lett. 127, 197701 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polshyn, H. et al. Topological charge density waves at half-integer filling of a moiré superlattice. Nat. Phys. 18, 42–47 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tao, Z. et al. Valley-coherent quantum anomalous Hall state in AB-stacked MoTe2/WSe2 bilayers. Phys. Rev. X 14, 011004 (2024).

    CAS 

    Google Scholar
     

  • Han, T. et al. Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene. Science 384, 647–651 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sha, Y. et al. Observation of Chern insulator in crystalline ABCA-tetralayer graphene with spin-orbit coupling. Science 384, 414–419 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tešanović, Z., Axel, F. & Halperin, B. “Hall crystal” versus Wigner crystal. Phys. Rev. B 39, 8525 (1989).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ung, S. F., Lee, J. & Reichman, D. R. Competing generalized Wigner crystal states in moiré heterostructures. Phys. Rev. B 108, 245113 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Morales-Durán, N., Potasz, P. & MacDonald, A. H. Magnetism and quantum melting in moiré-material Wigner crystals. Phys. Rev. B 107, 235131 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, L. et al. Evidence for a fractional fractal quantum hall effect in graphene superlattices. Science 350, 1231–1234 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Spanton, E. M. et al. Observation of fractional chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • He, M. et al. Symmetry-broken Chern insulators in twisted double bilayer graphene. Nano Lett. 23, 11066–11072 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xie, Y. et al. Strong interactions and isospin symmetry breaking in a supermoiré lattice. Preprint at https://arxiv.org/abs/2404.01372 (2024).

  • Waters, D. et al. Topological flat bands in a family of multilayer graphene moiré lattices. Nat. Commun. 15, 10552 (2024).

  • Streda, P. Quantised Hall effect in a two-dimensional periodic potential. J. Phys. C 15, L1299 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Streda, P. Theory of quantised Hall conductivity in two dimensions. J. Phys. C 15, L717 (1982).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Zhu, J., Su, J.-J. & MacDonald, A. H. Voltage-controlled magnetic reversal in orbital Chern insulators. Phys. Rev. Lett. 125, 227702 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 374–380 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Xu, S. et al. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 619–626 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Rickhaus, P. et al. Gap opening in twisted double bilayer graphene by crystal fields. Nano Lett. 19, 8821–8828 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kolář, K., Zhang, Y., Nadj-Perge, S., von Oppen, F. & Lewandowski, C. Electrostatic fate of N-layer moiré graphene. Phys. Rev. B 108, 195148 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fukui, T., Hatsugai, Y. & Suzuki, H. Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn 74, 1674–1677 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments