Saturday, February 22, 2025
No menu items!
HomeNatureModulated ringdown comb interferometry for sensing of highly complex gases

Modulated ringdown comb interferometry for sensing of highly complex gases

  • Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Q. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl Acad. Sci. 118, e2105063118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Q. et al. Breath analysis by ultra-sensitive broadband laser spectroscopy detects SARS-CoV-2 infection. J. Breath Res. 17, 036001 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rieker, G. B. et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 1, 290–298 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Herman, D. I. et al. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Sci. Adv. 7, eabe9765 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giorgetta, F. R. et al. Open-path dual-comb spectroscopy for multispecies trace gas detection in the 4.5–5 μm spectral region. Laser Photonics Rev. 15, 2000583 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bui, T. Q. et al. Spectral analyses of trans– and cis-DOCO transients via comb spectroscopy. Mol. Phys. 116, 3710–3717 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Changala, P. B., Spaun, B., Patterson, D., Doyle, J. M. & Ye, J. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules. Appl. Phys. B 122, 292 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Foltynowicz, A., Maslowski, P., Fleisher, A. J., Bjork, B. J. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Changala, P. B., Weichman, M. L., Lee, K. F., Fermann, M. E. & Ye, J. Rovibrational quantum state resolution of the C60 fullerene. Science 363, 49–54 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bui, T. Q. et al. Direct measurements of DOCO isomers in the kinetics of OD + CO. Sci. Adv. 4, eaao4777 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleisher, A. J. et al. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5, 2241–2246 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, C., Morville, J., Rutkowski, L., Vieira, F. S. & Foltynowicz, A. Cavity-enhanced frequency comb vernier spectroscopy. Photonics 9, 222 (2022).

    Article 

    Google Scholar
     

  • Sulzer, P. et al. Cavity-enhanced field-resolved spectroscopy. Nat. Photonics 16, 692–697 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Khodabakhsh, A. et al. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 μm. Opt. Lett. 41, 2541–2544 (2016).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sterczewski, L. A. et al. Cavity-enhanced Vernier spectroscopy with a chip-scale mid-infrared frequency comb. ACS Photonics 9, 994–1001 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Haakestad, M. W., Lamour, T. P., Leindecker, N., Marandi, A. & Vodopyanov, K. L. Intracavity trace molecular detection with a broadband mid-IR frequency comb source. J. Opt. Soc. Am. B 30, 631–640 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Markus, C. R. et al. Cavity-enhanced dual-comb spectroscopy in the molecular fingerprint region using free-running quantum cascade lasers. J. Opt. Soc. Am. B 41, E56–E64 (2024).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Adler, F., Thorpe, M. J., Cossel, K. C. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Okeefe, A. & Deacon, D. A. G. Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lisak, D. et al. Dual-comb cavity ring-down spectroscopy. Sci. Rep. 12, 2377 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dubroeucq, R. & Rutkowski, L. Optical frequency comb Fourier transform cavity ring-down spectroscopy. Opt. Express 30, 13594–13602 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Costello, B. D. et al. A review of the volatiles from the healthy human body. J. Breath Res. 8, 014001 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Sherwin, E. D. et al. US oil and gas system emissions from nearly one million aerial site measurements. Nature 627, 328–334 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Deshmukh, C. S. et al. Net greenhouse gas balance of fibre wood plantation on peat in Indonesia. Nature 616, 740–746 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dweik, R. A. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 184, 602–615 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lundberg, J. O. N. et al. High nitric-oxide production in human paranasal sinuses. Nat. Med. 1, 370–373 (1995).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Andersson, J. A., Uddman, R. & Cardell, L. O. Carbon monoxide is endogenously produced in the human nose and paranasal sinuses. J Allergy Clin. Immunol. 105, 269–273 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitsui, T., Miyamura, M., Matsunami, A., Kitagawa, K. & Arai, N. Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry. Clin. Chem. 43, 1993–1995 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costello, B. P. J. D., Ledochowski, M. & Ratcliffe, N. M. The importance of methane breath testing: a review. J. Breath Res. 7, 024001 (2013).

    Article 

    Google Scholar
     

  • Wang, T. S., Pysanenko, A., Dryahina, K., Spanel, P. & Smith, D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2, 037013 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Smith, D. & Spanel, P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J. Breath Res. 9, 022001 (2015).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nielsen, G. D. & Wolkoff, P. Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch. Toxicol. 84, 423–446 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Winkowski, M. & Stacewicz, T. Optical detection of formaldehyde in air in the 3.6 μm range. Biomed. Opt. Express 11, 7019–7031 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55–57 (2010).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Foltynowicz, A., Ban, T., Maslowski, P., Adler, F. & Ye, J. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xia, Q. et al. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat. Commun. 14, 6655 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Lorente, A. I. & Mizaikoff, B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal. Bioanal. Chem. 408, 2875–2889 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Spanel, P. & Smith, D. Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS. J. Breath Res. 2, 046003 (2008).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Truong, G.-W. et al. Mid-infrared supermirrors with finesse exceeding 400 000. Nat. Commun. 14, 7846 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Suh, M. G., Yang, Q. F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics 12, 209–214 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tian, L. et al. Gas phase multicomponent detection and analysis combining broadband dual-frequency comb absorption spectroscopy and deep learning. Commun. Eng. 2, 54 (2023).

    Article 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Johnson, T. A. & Diddams, S. A. Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Appl. Phys. B 107, 31–39 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hjältén, A., Foltynowic, A. & Sadiek, I. Line positions and intensities of the ν1 band of 12CH3I using mid-infrared optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 306, 108646 (2023).

    Article 

    Google Scholar
     

  • Zuo, Z. et al. Broadband mid-infrared molecular spectroscopy based on passive coherent optical-optical modulated frequency combs. Photonics Res. 9, 1358–1368 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Tomaszewska-Rolla, D. et al. Mid-infrared optical frequency comb spectroscopy using an all-silica antiresonant hollow-core fiber. Opt. Express 32, 10679–10689 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Adler, F. et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–21872 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sterczewski, L. A. et al. Mid-infrared dual-comb spectroscopy with interband cascade lasers. Opt. Lett. 44, 2113–2116 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Komagata, K. N., Wittwer, V. J., Südmeyer, T., Emmenegger, L. & Gianella, M. Absolute frequency referencing for swept dual-comb spectroscopy with midinfrared quantum cascade lasers. Phys. Rev. Res. 5, 013047 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hjältén, A. et al. Optical frequency comb Fourier transform spectroscopy of 14N216O at 7.8 µm. J. Quant. Spectrosc. Radiat. Transf. 271, 107734 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Germann, M. et al. A methane line list with sub-MHz accuracy in the 1250 to 1380 cm−1 range from optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 288, 108252 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Dawson, B. et al. Measurements of methane and nitrous oxide in human breath and the development of UK scale emissions. PLoS One 18, e0295157 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. N. & Wang, C. J. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath Res. 7, 037109 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Turner, C., Spanel, P. & Smith, D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 27, 637–648 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Dryahina, K., Smith, D. & Spanel, P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1296–1304 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Paredi, P., Kharitonov, S. A. & Barnes, P. J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 162, 1450–1454 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunnington, A. J. & Hormbrey, P. Breath analysis to detect recent exposure to carbon monoxide. Postgrad. Med. J. 78, 233–237 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poirson, J., Bretenaker, F., Vallet, M. & LeFloch, A. Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses. J. Opt. Soc. Am. B 14, 2811–2817 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wysocki, G. & Weidmann, D. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser. Opt. Express 18, 26123–26140 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J. & Budni, P. A. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Iwakuni, K. et al. Phase-stabilized 100 mW frequency comb near 10 μm. Appl. Phys. B 124, 128 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasilyev, S. et al. Longwave infrared (6.6–11.4 μm) dual-comb spectroscopy with 240,000 comb-mode-resolved data points at video rate. Opt. Lett. 48, 2273–2276 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Smolski, V. et al. Half-Watt average power femtosecond source spanning 3–8 μm based on subharmonic generation in GaAs. Appl. Phys. B 124, 101 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Heckl, O. H. et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs. Opt. Lett. 41, 5405–5408 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6-6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator. Opt. Lett. 36, 2275–2277 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Newbury, N. R., Coddington, I. & Swann, W. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18, 7929–7945 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Harris, P. A. et al. The REDCap consortium: building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Drabinska, N. et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J. Breath Res. 15, 034001 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Liang, Q., Bisht, A., Scheck, A., Schunemann, P. G. & Ye. J. Data for modulated ringdown comb interferometry for sensing of highly complex gases. Zenodo https://doi.org/10.5281/zenodo.14254339 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments