Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).
Liang, Q. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl Acad. Sci. 118, e2105063118 (2021).
Liang, Q. et al. Breath analysis by ultra-sensitive broadband laser spectroscopy detects SARS-CoV-2 infection. J. Breath Res. 17, 036001 (2023).
Rieker, G. B. et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 1, 290–298 (2014).
Herman, D. I. et al. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Sci. Adv. 7, eabe9765 (2021).
Giorgetta, F. R. et al. Open-path dual-comb spectroscopy for multispecies trace gas detection in the 4.5–5 μm spectral region. Laser Photonics Rev. 15, 2000583 (2021).
Bui, T. Q. et al. Spectral analyses of trans– and cis-DOCO transients via comb spectroscopy. Mol. Phys. 116, 3710–3717 (2018).
Changala, P. B., Spaun, B., Patterson, D., Doyle, J. M. & Ye, J. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules. Appl. Phys. B 122, 292 (2016).
Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).
Foltynowicz, A., Maslowski, P., Fleisher, A. J., Bjork, B. J. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2013).
Changala, P. B., Weichman, M. L., Lee, K. F., Fermann, M. E. & Ye, J. Rovibrational quantum state resolution of the C60 fullerene. Science 363, 49–54 (2019).
Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).
Bui, T. Q. et al. Direct measurements of DOCO isomers in the kinetics of OD + CO. Sci. Adv. 4, eaao4777 (2018).
Fleisher, A. J. et al. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5, 2241–2246 (2014).
Lu, C., Morville, J., Rutkowski, L., Vieira, F. S. & Foltynowicz, A. Cavity-enhanced frequency comb vernier spectroscopy. Photonics 9, 222 (2022).
Sulzer, P. et al. Cavity-enhanced field-resolved spectroscopy. Nat. Photonics 16, 692–697 (2022).
Khodabakhsh, A. et al. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 μm. Opt. Lett. 41, 2541–2544 (2016).
Sterczewski, L. A. et al. Cavity-enhanced Vernier spectroscopy with a chip-scale mid-infrared frequency comb. ACS Photonics 9, 994–1001 (2022).
Haakestad, M. W., Lamour, T. P., Leindecker, N., Marandi, A. & Vodopyanov, K. L. Intracavity trace molecular detection with a broadband mid-IR frequency comb source. J. Opt. Soc. Am. B 30, 631–640 (2013).
Markus, C. R. et al. Cavity-enhanced dual-comb spectroscopy in the molecular fingerprint region using free-running quantum cascade lasers. J. Opt. Soc. Am. B 41, E56–E64 (2024).
Adler, F., Thorpe, M. J., Cossel, K. C. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010).
Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).
Okeefe, A. & Deacon, D. A. G. Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988).
Lisak, D. et al. Dual-comb cavity ring-down spectroscopy. Sci. Rep. 12, 2377 (2022).
Dubroeucq, R. & Rutkowski, L. Optical frequency comb Fourier transform cavity ring-down spectroscopy. Opt. Express 30, 13594–13602 (2022).
Costello, B. D. et al. A review of the volatiles from the healthy human body. J. Breath Res. 8, 014001 (2014).
Sherwin, E. D. et al. US oil and gas system emissions from nearly one million aerial site measurements. Nature 627, 328–334 (2024).
Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).
van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).
Deshmukh, C. S. et al. Net greenhouse gas balance of fibre wood plantation on peat in Indonesia. Nature 616, 740–746 (2023).
Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009).
Dweik, R. A. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 184, 602–615 (2011).
Lundberg, J. O. N. et al. High nitric-oxide production in human paranasal sinuses. Nat. Med. 1, 370–373 (1995).
Andersson, J. A., Uddman, R. & Cardell, L. O. Carbon monoxide is endogenously produced in the human nose and paranasal sinuses. J Allergy Clin. Immunol. 105, 269–273 (2000).
Mitsui, T., Miyamura, M., Matsunami, A., Kitagawa, K. & Arai, N. Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry. Clin. Chem. 43, 1993–1995 (1997).
Costello, B. P. J. D., Ledochowski, M. & Ratcliffe, N. M. The importance of methane breath testing: a review. J. Breath Res. 7, 024001 (2013).
Wang, T. S., Pysanenko, A., Dryahina, K., Spanel, P. & Smith, D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2, 037013 (2008).
Smith, D. & Spanel, P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J. Breath Res. 9, 022001 (2015).
Nielsen, G. D. & Wolkoff, P. Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch. Toxicol. 84, 423–446 (2010).
Winkowski, M. & Stacewicz, T. Optical detection of formaldehyde in air in the 3.6 μm range. Biomed. Opt. Express 11, 7019–7031 (2020).
Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55–57 (2010).
Foltynowicz, A., Ban, T., Maslowski, P., Adler, F. & Ye, J. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011).
Xia, Q. et al. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat. Commun. 14, 6655 (2023).
López-Lorente, A. I. & Mizaikoff, B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal. Bioanal. Chem. 408, 2875–2889 (2016).
Spanel, P. & Smith, D. Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS. J. Breath Res. 2, 046003 (2008).
Truong, G.-W. et al. Mid-infrared supermirrors with finesse exceeding 400 000. Nat. Commun. 14, 7846 (2023).
Suh, M. G., Yang, Q. F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics 12, 209–214 (2018).
Tian, L. et al. Gas phase multicomponent detection and analysis combining broadband dual-frequency comb absorption spectroscopy and deep learning. Commun. Eng. 2, 54 (2023).
Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015).
Johnson, T. A. & Diddams, S. A. Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Appl. Phys. B 107, 31–39 (2012).
Hjältén, A., Foltynowic, A. & Sadiek, I. Line positions and intensities of the ν1 band of 12CH3I using mid-infrared optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 306, 108646 (2023).
Zuo, Z. et al. Broadband mid-infrared molecular spectroscopy based on passive coherent optical-optical modulated frequency combs. Photonics Res. 9, 1358–1368 (2021).
Tomaszewska-Rolla, D. et al. Mid-infrared optical frequency comb spectroscopy using an all-silica antiresonant hollow-core fiber. Opt. Express 32, 10679–10689 (2024).
Adler, F. et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–21872 (2010).
Sterczewski, L. A. et al. Mid-infrared dual-comb spectroscopy with interband cascade lasers. Opt. Lett. 44, 2113–2116 (2019).
Komagata, K. N., Wittwer, V. J., Südmeyer, T., Emmenegger, L. & Gianella, M. Absolute frequency referencing for swept dual-comb spectroscopy with midinfrared quantum cascade lasers. Phys. Rev. Res. 5, 013047 (2023).
Hjältén, A. et al. Optical frequency comb Fourier transform spectroscopy of 14N216O at 7.8 µm. J. Quant. Spectrosc. Radiat. Transf. 271, 107734 (2021).
Germann, M. et al. A methane line list with sub-MHz accuracy in the 1250 to 1380 cm−1 range from optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 288, 108252 (2022).
Dawson, B. et al. Measurements of methane and nitrous oxide in human breath and the development of UK scale emissions. PLoS One 18, e0295157 (2023).
Wang, Z. N. & Wang, C. J. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath Res. 7, 037109 (2013).
Turner, C., Spanel, P. & Smith, D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 27, 637–648 (2006).
Dryahina, K., Smith, D. & Spanel, P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1296–1304 (2010).
Paredi, P., Kharitonov, S. A. & Barnes, P. J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 162, 1450–1454 (2000).
Cunnington, A. J. & Hormbrey, P. Breath analysis to detect recent exposure to carbon monoxide. Postgrad. Med. J. 78, 233–237 (2002).
Poirson, J., Bretenaker, F., Vallet, M. & LeFloch, A. Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses. J. Opt. Soc. Am. B 14, 2811–2817 (1997).
Wysocki, G. & Weidmann, D. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser. Opt. Express 18, 26123–26140 (2010).
Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J. & Budni, P. A. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).
Iwakuni, K. et al. Phase-stabilized 100 mW frequency comb near 10 μm. Appl. Phys. B 124, 128 (2018).
Vasilyev, S. et al. Longwave infrared (6.6–11.4 μm) dual-comb spectroscopy with 240,000 comb-mode-resolved data points at video rate. Opt. Lett. 48, 2273–2276 (2023).
Smolski, V. et al. Half-Watt average power femtosecond source spanning 3–8 μm based on subharmonic generation in GaAs. Appl. Phys. B 124, 101 (2018).
Heckl, O. H. et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs. Opt. Lett. 41, 5405–5408 (2016).
Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6-6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012).
Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator. Opt. Lett. 36, 2275–2277 (2011).
Newbury, N. R., Coddington, I. & Swann, W. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18, 7929–7945 (2010).
Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).
Harris, P. A. et al. The REDCap consortium: building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019).
Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).
Drabinska, N. et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J. Breath Res. 15, 034001 (2021).
Liang, Q., Bisht, A., Scheck, A., Schunemann, P. G. & Ye. J. Data for modulated ringdown comb interferometry for sensing of highly complex gases. Zenodo https://doi.org/10.5281/zenodo.14254339 (2025).