Friday, April 25, 2025
No menu items!
HomeNatureModular chiral origami metamaterials | Nature

Modular chiral origami metamaterials | Nature

  • McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Mirkhalaf, M. & Rafsanjani, A. Harnessing machine mechanisms to continuously reprogram metamaterials. Matter 6, 3719–3731 (2023).


    Google Scholar
     

  • Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasuda, H. et al. Origami-based impact mitigation via rarefaction solitary wave creation. Sci. Adv. 5, eaau2835 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleck, N. A., Deshpande, V. S. & Ashby, M. F. Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2495–2516 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Deshpande, V. S., Fleck, N. A. & Ashby, M. F. Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Berger, J., Wadley, H. G. N. & McMeeking, R. M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deshpande, V. S., Ashby, M. F. & Fleck, N. A. Foam topology: bending versus stretching dominated architectures. Acta Materialia 49, 1035–1040 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties 2nd edn (Cambridge Univ. Press, 1999).

  • Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun.14, 6004 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Portela, C. M. et al. Supersonic impact resilience of nanoarchitected carbon. Nat. Mater. 20, 1491–1497 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaikeea, A. J. D., Cui, H., O’Masta, M., Zheng, X. R. & Deshpande, V. S. The toughness of mechanical metamaterials. Nat. Mater. 21, 297–304 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatch, H. W., Stillinger, F. H. & Debenedetti, P. G. Chiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition. J. Chem. Phys. 133, 224502 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Feng, H. et al. Helical structures with switchable and hierarchical chirality. Appl. Phys. Lett. 116, 194102 (2020).

    ADS 

    Google Scholar
     

  • Frenzel, T. et al. Large characteristic lengths in 3D chiral elastic metamaterials. Commun. Mater. 2, 4 (2021).


    Google Scholar
     

  • Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Misseroni, D. et al. Origami engineering. Nat. Rev. Methods Primers 4, 40 (2024).

    CAS 

    Google Scholar
     

  • Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Overvelde, J. T. B., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Z. et al. Engineering zero modes in transformable mechanical metamaterials. Nat. Commun. 14, 1266 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melancon, D., Gorissen, B., García-Mora, C. J., Hoberman, C. & Bertoldi, K. Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Overvelde, J. T. B. et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nat. Commun. 7, 10929 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Adaptive hierarchical origami-based metastructures. Nat. Commun. 15, 6247 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, X., Spadaccini, C. M. & Greer, J. R. Responsive materials architected in space and time. Nat. Rev. Mater. 7, 683–701 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenett, B. et al. Discretely assembled mechanical metamaterials. Sci. Adv. 6, eabc9943 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T., Pauly, M. & Reis, P. M. A reprogrammable mechanical metamaterial with stable memory. Nature 589, 386–390 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Velay-Lizancos, M., Restrepo, D., Mankame, N. D. & Zavattieri, P. D. Architected material analogs for shape memory alloys. Matter 4, 1990–2012 (2021).

    CAS 

    Google Scholar
     

  • Liu, K., Pratapa, P. P., Misseroni, D., Tachi, T. & Paulino, G. H. Triclinic metamaterials by tristable origami with reprogrammable frustration. Adv. Mater. 34, 2107998 (2022).

    CAS 

    Google Scholar
     

  • Schenk, M. & Guest, S. D. Geometry of miura-folded metamaterials. Proc. Natl Acad. Sci. USA 110, 3276–3281 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, K. & Paulino, G. H. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170348 (2017).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Rafsanjani, A., Bertoldi, K. & Studart, A. R. Programming soft robots with flexible mechanical metamaterials. Sci. Robot. 4, eaav7874 (2019).

    PubMed 

    Google Scholar
     

  • Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoder, Z., Rumley, E. H., Schmidt, I., Rothemund, P. & Keplinger, C. Hexagonal electrohydraulic modules for rapidly reconfigurable high-speed robots. Sci. Robot. 9, eadl3546 (2024).

    PubMed 

    Google Scholar
     

  • Baines, R., Fish, F., Bongard, J. & Kramer-Bottiglio, R. Robots that evolve on demand. Nat. Rev. Mater. 9, 822–835 (2024).


    Google Scholar
     

  • Yin, X., Yang, R., Tan, G. & Fan, S. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 370, 786–791 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal, J. et al. Scalable, “dip-and-dry” fabrication of a wide-angle plasmonic selective absorber for high-efficiency solar-thermal energy conversion. Adv. Mater. 29, 1702156 (2017).


    Google Scholar
     

  • Mandal, J. et al. Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3, 3088–3099 (2019).

    CAS 

    Google Scholar
     

  • Visintin, A. Differential Models of Hysteresis (Springer, 2013).

  • Preisach, F. Über die magnetische nachwirkung. Z. Phys. 94, 277–302 (1935).

    ADS 

    Google Scholar
     

  • Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mungan, M. Putting memories on paper. Proc. Natl Acad. Sci. USA 119, e2208743119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Controlled pathways and sequential information processing in serially coupled mechanical hysterons. Proc. Natl Acad. Sci. USA 121, e2308414121 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kresling, B. Natural twist buckling in shells: from the Hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical Miura-ori (2008). In Proc. 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM: “Spanning Nano to Mega” (eds Abel, J.F. & Cooke, J. R.) 18–21 (Cornell Univ. Press, 2008).

  • Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai, Z., Wang, Y. & Jiang, H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc. Natl Acad. Sci. USA 115, 2032–2037 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, R. J. Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami (CRC Press, 2017).

  • Qi, H., Joyce, K. & Boyce, M. Durometer hardness and the stress-strain behavior of elastomeric materials. Rubber Chem. Technol. 76, 419–435 (2003).

    CAS 

    Google Scholar
     

  • Paulino, G. H. et al. Super-modular chiral origami metamaterials. Zenodo https://doi.org/10.5281/zenodo.14676200 (2025).

  • Zang, S., Misseroni, D., Zhao, T. & Paulino, G. H. Kresling origami mechanics explained: experiments and theory. J. Mech. Phys. Solids 188, 105630 (2024).

    MathSciNet 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments