Saturday, December 27, 2025
No menu items!
HomeNatureModelling late gastrulation in stem cell-derived monkey embryo models

Modelling late gastrulation in stem cell-derived monkey embryo models

  • Karvas, R. M. et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 30, 1148–1165.e7 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oldak, B. et al. Complete human day 14 post-implantation embryo models from naïve ES cells. Nature 622, 562–573 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 186, 3776–3792.e16 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weatherbee, B. A. T. et al. A model of the post-implantation human embryo derived from pluripotent stem cells. Nature https://doi.org/10.1038/s41586-023-06368-y (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedroza, M. et al. Self-patterning of human stem cells into post-implantation lineages. Nature 622, 574–583 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ai, Z. et al. Dissecting peri-implantation development using cultured human embryos and embryo-like assembloids. Cell Res. 33, 661–678 (2023).

  • Li, J. et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 30, 362–377.e7 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghimire, S., Mantziou, V., Moris, N. & Martinez Arias, A. Human gastrulation: the embryo and its models. Dev. Biol. 474, 100–108 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Y. et al. Ex utero monkey embryogenesis from blastocyst to early organogenesis. Cell 186, 2092–2110.e23 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai, J. et al. Neurulation of the cynomolgus monkey embryo achieved from 3D blastocyst culture. Cell 186, 2078–2091.e18 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai, J. et al. Primate gastrulation and early organogenesis at single-cell resolution. Nature 612, 732–738 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergmann, S. et al. Spatial profiling of early primate gastrulation in utero. Nature 609, 136–143 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, G. et al. Spatial and molecular anatomy of germ layers in the gastrulating cynomolgus monkey embryo. Cell Rep. 40, 111285 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, B. et al. The single-cell and spatial transcriptional landscape of human gastrulation and early brain development. Cell Stem Cell 30, 851–866.e7 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat. Cell Biol. 25, 604–615 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, L. et al. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat. Cell Biol. 27, 360–369 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Z. et al. 3D reconstruction of a gastrulating human embryo. Cell 187, 2855–2874.e19 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Y. et al. 3D reconstruction of a human Carnegie stage 9 embryo provides a snapshot of early body plan formation. Cell Stem Cell 32, 1006–1024.e5 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clark, A. T. et al. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: considerations leading to the revised ISSCR guidelines. Stem Cell Rep. 16, 1416–1424 (2021).

    Article 

    Google Scholar
     

  • Shahbazi, M. N., Siggia, E. D. & Zernicka-Goetz, M. Self-organization of stem cells into embryos: a window on early mammalian development. Science 364, 948–951 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, J. et al. Developmental and stem cell biology’s bright future. Cell 187, 3224–3228 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. & Fu, J. Toward developing human organs via embryo models and chimeras. Cell 187, 3194–3219 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarazi, S. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naïve ESCs. Cell 185, 3290–3306.e25 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amadei, G. et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature 610, 143–153 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, K. Y. C. et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell 29, 1445–1458.e8 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. A complete model of mouse embryogenesis through organogenesis enabled by chemically induced embryo founder cells. Cell 188, 5912–5930.e20 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Rahilly, R. & Müller, F. Developmental Stages in Human Embryos (Carnegie Institution Of Washington, 1987).

  • Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, K. et al. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, H. et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguilera-Castrejon, A. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593, 119–124 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ee, L. S. et al. Enhancer remodeling by OTX2 directs specification and patterning of mammalian definitive endoderm. Dev. Cell https://doi.org/10.1016/j.devcel.2025.07.020 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Rahilly, R. & Muller, F. Neurulation in the normal human embryo. Ciba Found. Symp. 181, 70–82 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7, 90–100 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng, G., Martinez Arias, A. & Sutherland, A. The primitive streak and cellular principles of building an amniote body through gastrulation. Science 374, abg1727 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas P. Q., Brown, A. & Beddington, R. S. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85–94 (1998).

  • Silberg, D. G., Swain, G. P., Suh, E. R. & Traber, P. G. Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119, 961–971 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. C. et al. Single-cell patterning and axis characterization in the murine and human definitive endoderm. Cell Res. 31, 326–344 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, L. et al. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat. Commun. 11, 4158 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobayashi, T. et al. Principles of early human development and germ cell program from conserved model systems. Nature 546, 416–420 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hancock, G. V., Wamaitha, S. E., Peretz, L. & Clark, A. T. Mammalian primordial germ cell specification. Development 148, dev189217 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schule, K. M. et al. Eomes restricts Brachyury functions at the onset of mouse gastrulation. Dev. Cell 58, 1627–1642.e7 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Dias, A. & Martinez Arias, A. Laying out the mammalian body plan to a T. Dev. Cell 58, 1625–1626 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amin, S. et al. Cdx and T Brachyury Co-activate growth signaling in the embryonic axial progenitor niche. Cell Rep. 17, 3165–3177 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A. P. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev. 13, 3185–3190 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallo, M. Reassessing the role of Hox genes during vertebrate development and evolution. Trends Genet. 34, 209–217 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russ A. P. et al. Eomesoderminis required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

  • Eakin, G. S. & Behringer, R. R. Diversity of germ layer and axis formation among mammals. Semin. Cell Dev. Biol. 15, 619–629 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Linneberg-Agerholm, M. et al. The primitive endoderm supports lineage plasticity to enable regulative development. Cell 187, 4010–4029.e16 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girgin, M. U. et al. Bioengineered embryoids mimic post-implantation development in vitro. Nat. Commun. 12, 5140 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masamsetti, V. P. et al. Characterization of the mesendoderm progenitors in the gastrulating mouse embryo. Dev. Cell https://doi.org/10.1101/2024.04.28.591221 (2024).

    Article 

    Google Scholar
     

  • de Bree, K., de Bakker, B. S. & Oostra, R.-J. The development of the human notochord. PLoS ONE https://doi.org/10.1126/science.aag0053 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. Live birth of chimeric monkey with high contribution from embryonic stem cells. Cell 186, 4996–5014.e24 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamazaki, N. et al. Retinoic acid induces human gastruloids with posterior embryo-like structures. Nat. Cell Biol. 26, 1790–1803 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phipson, B. et al. propeller: Testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. stringr: Simple, consistent wrappers for common string operations. R package version 1.5.1 (2023).

  • Wickham, H. et al. dplyr: A grammar of data manipulation. R package version 1.1.4 (2025).

  • Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).

    Article 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Kolde, R. Pheatmap: pretty heatmaps. CRAN https://doi.org/10.32614/CRAN.package.pheatmap (2019).

  • RELATED ARTICLES

    Most Popular

    Recent Comments