Thursday, April 3, 2025
No menu items!
HomeNatureMetal–support frontier orbital interactions in single-atom catalysis

Metal–support frontier orbital interactions in single-atom catalysis

  • Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    ADS 
    MATH 
    CAS 

    Google Scholar
     

  • Kaiser, S. K. et al. Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Hulva, J. et al. Unraveling CO adsorption on model single-atom catalysts. Science 371, 375–379 (2021).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc. Chem. Res. 47, 783–792 (2014).

    PubMed 
    CAS 

    Google Scholar
     

  • Beniya, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).


    Google Scholar
     

  • Wang, C.-M., Wang, Y.-D., Ge, J.-W. & Xie, Z.-K. Reaction: industrial perspective on single-atom catalysis. Chem 5, 2736–2737 (2019).

    MATH 
    CAS 

    Google Scholar
     

  • Xiang, H., Feng, W. & Chen, Y. Single‐atom catalysts in catalytic biomedicine. Adv. Mater. 32, 1905994 (2020).

    MATH 
    CAS 

    Google Scholar
     

  • Li, S. et al. Interplay between the spin-selection rule and frontier orbital theory in O2 activation and CO oxidation by single-atom-sized catalysts on TiO2(110). Phys. Chem. Chem. Phys. 18, 24872–24879 (2016).

    PubMed 
    CAS 

    Google Scholar
     

  • Fu, Z., Yang, B. & Wu, R. Understanding the activity of single-atom catalysis from frontier orbitals. Phys. Rev. Lett. 125, 156001 (2020).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Spivey, T. D. & Holewinski, A. Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. J. Am. Chem. Soc. 143, 11897–11902 (2021).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Ren, Y. et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 10, 4500 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, L. et al. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 143, 18854–18858 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. CO oxidation on Au/TiO2: condition-dependent active sites and mechanistic pathways. J. Am. Chem. Soc. 138, 10467–10476 (2016).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Zhou, X. et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 140, 554–557 (2018).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Camellone, M. F. & Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 131, 10473–10483 (2009).

    PubMed 
    MATH 

    Google Scholar
     

  • Lang, R. et al. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120, 11986–12043 (2020).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).


    Google Scholar
     

  • Campbell, C. T. Electronic perturbations. Nat. Chem. 4, 597–598 (2012).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Bruix, A. et al. A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Yang, J., Li, W., Wang, D. & Li, Y. Electronic metal–support interaction of single‐atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020).

    MATH 
    CAS 

    Google Scholar
     

  • Chen, C. et al. Zero‐valent palladium single‐atoms catalysts confined in black phosphorus for efficient semi‐hydrogenation. Adv. Mater. 33, 2008471 (2021).

    CAS 

    Google Scholar
     

  • Chen, Z. et al. Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. Natl Sci. Rev. 5, 642–652 (2018).

    MATH 
    CAS 

    Google Scholar
     

  • Hammer, B., Morikawa, Y. & Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Houk, K. N. Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 8, 361–369 (1975).

    MATH 
    CAS 

    Google Scholar
     

  • Fukui, K. The role of frontier orbitals in chemical reactions (Nobel Lecture). Angew. Chem. Int. Ed. 21, 801–809 (1982).

    MATH 

    Google Scholar
     

  • Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Jacobsson, T. J. & Edvinsson, T. Photoelectrochemical determination of the absolute band edge positions as a function of particle size for ZnO quantum dots. J. Phys. Chem. C 116, 15692–15701 (2012).

    MATH 
    CAS 

    Google Scholar
     

  • Xu, H.-Q. et al. Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440–13443 (2015).

    PubMed 
    CAS 

    Google Scholar
     

  • Linsebigler, A. L., Lu, G. & Yates, J. T. Jr Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    CAS 

    Google Scholar
     

  • Lear, T. et al. The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J. Chem. Phys. 123, 174706 (2005).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Davidson, E. R., Kunze, K. L., Machado, F. B. C. & Chakravorty, S. J. The transition metal-carbonyl bond. Acc. Chem. Res. 26, 628–635 (1993).

    CAS 

    Google Scholar
     

  • Borodziński, A. & Bond, G. C. Selective hydrogenation of ethyne in ethene‐rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. Sci. Eng. 48, 91–144 (2006).


    Google Scholar
     

  • Hu, M. et al. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Res. 11, 905–912 (2017).

    MATH 

    Google Scholar
     

  • Pei, G. X. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5, 3717–3725 (2015).

    MATH 
    CAS 

    Google Scholar
     

  • Kumar, G., Lau, S. L. J., Krcha, M. D. & Janik, M. J. Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling. ACS Catal. 6, 1812–1821 (2016).

    CAS 

    Google Scholar
     

  • Zhang, W. et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catal. 10, 12932–12942 (2020).

    CAS 

    Google Scholar
     

  • Gorin, D. J., Sherry, B. D. & Toste, F. D. Ligand effects in homogeneous Au catalysis. Chem. Rev. 108, 3351–3378 (2008).

    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar
     

  • Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    CAS 

    Google Scholar
     

  • Bourgeat-Lami, E. & Lang, J. Encapsulation of inorganic particles by dispersion polymerization in polar media: 2. effect of silica size and concentration on the morphology of silica–polystyrene composite particles. J. Colloid Interface Sci. 210, 281–289 (1998).

    ADS 
    MATH 

    Google Scholar
     

  • Guo, J. et al. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl. Catal. A Gen. 273, 75–82 (2004).

    MATH 
    CAS 

    Google Scholar
     

  • Theofanidis, S. A., Galvita, V. V., Poelman, H. & Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catal. 5, 3028–3039 (2015).

    CAS 

    Google Scholar
     

  • Cornu, L., Gaudon, M. & Jubera, V. ZnAl2O4 as a potential sensor: variation of luminescence with thermal history. J. Mater. Chem. C 1, 5419–5428 (2013).

    CAS 

    Google Scholar
     

  • Zhang, J. et al. Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide. Cell Rep. Phys. Sci. 3, 100801 (2022).

    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    MATH 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS 
    MATH 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane‐wave and PAW wavefunctions and application to chemical‐bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 36, 354–360 (2006).

    MATH 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    ADS 
    MATH 
    CAS 

    Google Scholar
     

  • Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    CAS 

    Google Scholar
     

  • Gaussian 16, Revision C.01 (Theoretical Chemistry Institute, Univ. Wisconsin, 2018).

  • Glendening, E. D. & Weinhold, F. Natural resonance theory: I. General formalism. J. Comput. Chem. 19, 593–609 (1998).

    CAS 

    Google Scholar
     

  • Filot, I. A. W., van Santen, R. A. & Hensen, E. J. M. The optimally performing Fischer–Tropsch catalyst. Angew. Chem. Int. Ed. 53, 12746–12750 (2014).

    MATH 
    CAS 

    Google Scholar
     

  • Filot, I. A. W. et al. First-principles-based microkinetics simulations of synthesis gas conversion on a stepped rhodium surface. ACS Catal. 5, 5453–5467 (2015).

    MATH 
    CAS 

    Google Scholar
     

  • Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).

    PubMed 
    MATH 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments