Wednesday, February 5, 2025
No menu items!
HomeNatureMetal-halide porous framework superlattices | Nature

Metal-halide porous framework superlattices | Nature

  • Esaki, L. & Chang, L. L. New transport phenomenon in a semiconductor “superlattice”. Phys. Rev. Lett. 33, 495–498 (1974).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Novoselov, K. S. et al. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Udayabhaskararao, T. et al. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 358, 514–518 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham, P. V. et al. 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem. Rev. 122, 6514–6613 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wan, Z., Qian, Q., Huang, Y. & Duan, X. F. Layered hybrid superlattices as designable quantum solids. Nature https://doi.org/10.1038/s41586-024-07858-3 (2024).

  • Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Dong, A. et al. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gudiksen, M. S. et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Robinson, R. D. et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Devarakonda, A. et al. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 370, 231–236 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, J. et al. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. Nat. Mater. 23, 1326–1338 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wan, Z. et al. Unconventional superconductivity in chiral molecule–TaS2 hybrid superlattices. Nature 632, 69–74 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, J. et al. Modular assembly of a library of hybrid superlattices and artificial quantum solids. Matter. 7, 1131–1145 (2024).

    MATH 

    Google Scholar
     

  • Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fujita, M. et al. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994).

    CAS 
    MATH 

    Google Scholar
     

  • Sung Cho, H. et al. Extra adsorption and adsorbate superlattice formation in metal–organic frameworks. Nature 527, 503–507 (2015).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pang, J. et al. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal–organic frameworks. J. Am. Chem. Soc. 140, 12328–12332 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev. 386, 32–49 (2019).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Chen, Y. et al. Programmable water sorption through linker installation into a zirconium metal–organic framework. J. Am. Chem. Soc. 146, 11202–11210 (2024).

    CAS 

    Google Scholar
     

  • Bloch, W. M. et al. Capturing snapshots of post-synthetic metallation chemistry in metal–organic frameworks. Nat. Chem. 6, 906–912 (2014).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Volosskiy, B. et al. Metal–organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. ACS Nano 9, 3044–3049 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, S., Kapustin, E. A. & Yaghi, O. M. Coordinative alignment of molecules in chiral metal–organic frameworks. Science 353, 808–811 (2016).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, C. R., Uemura, T. & Kitagawa, S. Inorganic nanoparticles in porous coordination polymers. Chem. Soc. Rev. 45, 3828–3845 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gonzalez, M. I. et al. Confinement of atomically defined metal halide sheets in a metal–organic framework. Nature 577, 64–68 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, Z. et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586, 549–554 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zigon, N. et al. Crystalline sponge method: X-ray structure analysis of small molecules by post-orientation within porous crystals-principle and proof-of-concept studies. Angew. Chem. Int. Ed. 60, 25204–25222 (2021).

    CAS 

    Google Scholar
     

  • Inokuma, Y., Arai, T. & Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2, 780–783 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Deng, X. et al. Metal–organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 141, 10924–10929 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Malgras, V. et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 138, 13874–13881 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Demchyshyn, S. et al. Confining metal-halide perovskites in nanoporous thin films. Sci. Adv. 3, e1700738 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steeger, P. et al. Hysteretic piezochromism in a lead iodide-based two-dimensional inorganic–organic hybrid perovskite. J. Am. Chem. Soc. 146, 23205–23211 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hahm, D. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat. Nanotechnol. 17, 952–958 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cai, J. et al. Enhancing circularly polarized luminescence in quantum dots through chiral coordination-mediated growth at the liquid/liquid interface. J. Am. Chem. Soc. 145, 24375–24385 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 15154–15160 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ma, J., Wang, H. & Li, D. Recent progress of chiral perovskites: materials, synthesis, and properties. Adv. Mater. 33, 2008785 (2021).

    CAS 

    Google Scholar
     

  • Long, G. C. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    ADS 

    Google Scholar
     

  • Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhu, Y. et al. Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532–536 (2017).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sheldrick, G. M. SADABS, program for empirical absorption correction of area detector data (Univ. Göttingen, 1996).

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103–194150 (2020).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments