Astruc, D. The numerous paths of ferrocene. Nat. Chem. 15, 1650 (2023).
Shima, T. et al. Hydroamination of alkenes with dinitrogen and titanium polyhydrides. Nature 632, 307–312 (2024).
Münzfeld, L. et al. Synthesis and properties of cyclic sandwich compounds. Nature 620, 92–97 (2023).
Malischewski, M., Adelhardt, M., Sutter, J., Meyer, K. & Seppelt, K. Isolation and structural and electronic characterization of salts of the decamethylferrocene dication. Science 353, 678–682 (2016).
Burrell, A. K., Hemmi, G., Lynch, V. & Sessler, J. L. Uranylpentaphyrin: an actinide complex of an expanded porphyrin. J. Am. Chem. Soc. 113, 4690–4692 (1991).
Faraday, M. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Philos. Trans. R. Soc. London 115, 440–466 (1825).
Arndt, S. & Okuda, J. Mono(cyclopentadienyl) complexes of the rare-earth metals. Chem. Rev. 102, 1953–1976 (2002).
Pampaloni, G. Aromatic hydrocarbons as ligands. Recent advances in the synthesis, the reactivity and the applications of bis(η6-arene) complexes. Coord. Chem. Rev. 254, 402–419 (2010).
Mahieu, N., Piątkowski, J., Simler, T. & Nocton, G. Back to the future of organolanthanide chemistry. Chem. Sci. 14, 443–457 (2023).
Afanasyev, O. I. et al. Cyclobutadiene metal complexes: a new class of highly selective catalysts. An application to direct reductive amination. ACS Catal. 6, 2043–2046 (2016).
Zhou, Z. & Petrukhina, M. A. Adding multiple electrons to helicenes: how they respond. Chem. Sci. 16, 468–479 (2025).
Spitler, E. L., Johnson, C. A. II & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).
Masamune, S., Hojo, K., Hojo, K., Bigam, G. & Rabenstein, D. L. The geometry of [10]annulenes. J. Am. Chem. Soc. 93, 4966–4968 (1971).
Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 462, 819–821 (2003).
Moll, J. F., Pemberton, R. P., Gutierrez, M. G., Castro, C. & Karney, W. L. Configuration change in [14]annulene requires Möbius antiaromatic bond shifting. J. Am. Chem. Soc. 129, 274–275 (2007).
Stawski, W. et al. The anti-aromatic dianion and aromatic tetraanion of [18]annulene. Nat. Chem. 16, 998–1002 (2024).
Białek, M. J., Hurej, K., Furuta, H. & Latos-Grażyński, L. Organometallic chemistry confined within a porphyrin-like framework. Chem. Soc. Rev. 52, 2082–2144 (2023).
Vogel, E., Köcher, M., Schmickler, H. & Lex, J. Porphycene-a novel porphin isomer. Angew. Chem. Int. Ed. Engl. 25, 257–259 (1986).
Grover, V. & Ravikanth, M. Coordination chemistry of porphycenes. Coord. Chem. Rev. 516, 215999 (2024).
Thakur, M. S. et al. Metal coordinated macrocyclic complexes in different chemical transformations. Coord. Chem. Rev. 471, 214739 (2022).
Sessler, J. L., Gross, Z. & Furuta, H. Introduction: expanded, contracted, and isomeric porphyrins. Chem. Rev. 117, 2201–2202 (2017).
Lash, T. D. Carbaporphyrinoid systems. Chem. Rev. 117, 2313–2446 (2017).
Xu, B. et al. Syntheses, structures and reactivities of strained fused-ring metallaaromatics containing planar eleven-carbon chains with a shiftable metal carbyne bond. Nat. Commun. 14, 4378 (2024).
Byrne, P. A. & Gilheany, D. G. The mechanism of phosphonium ylide alcoholysis and hydrolysis: concerted addition of the O–H bond across the P=C bond. Chem. Eur. J. 22, 9140–9154 (2016).
Che, C.-M. et al. Triphenylphosphine reduction of dioxoosmium(VI) porphyrins. Crystal structures of bis(triphenylphosphine oxide) (octaethylporphinato)osmium(II) and bis(triphenylphosphine) (meso-tetraphenylporphinato)osmium(II). Inorg. Chem. 26, 3907–3911 (1987).
Zhu, C. et al. A metal-bridged tricyclic aromatic system: synthesis of osmium polycyclic aromatic complexes. Angew. Chem. Int. Ed. 53, 6232–6236 (2014).
Zhu, C. et al. σ-Aromaticity in an unsaturated ring: osmapentalene derivatives containing a metallacyclopropene unit. Angew. Chem. Int. Ed. 54, 3102–3106 (2015).
Schleyer, P. V. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).
Fallah-Bagher-Shaidaei, H., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R. Which NICS aromaticity index for planar π rings is best? Org. Lett. 8, 863–866 (2006).
Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).
Foroutan-Nejad, C. Is NICS a reliable aromaticity index for transition metal clusters? Theor. Chem. Acc. 134, 8 (2015).
Sundholm, D., Fliegl, H. & Berger, R. J. F. Calculations of magnetically induced current densities: theory and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 639–678 (2016).
Knizia, G. & Klein, J. E. M. N. Electron flow in reaction mechanisms—revealed from first principles. Angew. Chem. Int. Ed. 54, 5518–5522 (2015).
Gross, C. L. & Girolami, G. S. Synthesis and characterization of osmium (IV) polyhydride complexes of stoichiometry (C5Me5)OsH3(L). Crystal structures of (C5Me5)OsH3(AsPh3) and (C5Me5)OsH3(PPh3). Organometallics 25, 4792–4798 (2006).
Chen, D., Hua, Y. & Xia, H. Metallaaromatic chemistry: history and development. Chem. Rev. 120, 12994–13086 (2020).