Thursday, May 1, 2025
No menu items!
HomeNatureMetal-centred planar annulenes | Nature

Metal-centred planar [15]annulenes | Nature

  • Astruc, D. The numerous paths of ferrocene. Nat. Chem. 15, 1650 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shima, T. et al. Hydroamination of alkenes with dinitrogen and titanium polyhydrides. Nature 632, 307–312 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Münzfeld, L. et al. Synthesis and properties of cyclic sandwich compounds. Nature 620, 92–97 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Malischewski, M., Adelhardt, M., Sutter, J., Meyer, K. & Seppelt, K. Isolation and structural and electronic characterization of salts of the decamethylferrocene dication. Science 353, 678–682 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burrell, A. K., Hemmi, G., Lynch, V. & Sessler, J. L. Uranylpentaphyrin: an actinide complex of an expanded porphyrin. J. Am. Chem. Soc. 113, 4690–4692 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Faraday, M. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Philos. Trans. R. Soc. London 115, 440–466 (1825).

    Article 
    ADS 

    Google Scholar
     

  • Arndt, S. & Okuda, J. Mono(cyclopentadienyl) complexes of the rare-earth metals. Chem. Rev. 102, 1953–1976 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pampaloni, G. Aromatic hydrocarbons as ligands. Recent advances in the synthesis, the reactivity and the applications of bis(η6-arene) complexes. Coord. Chem. Rev. 254, 402–419 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mahieu, N., Piątkowski, J., Simler, T. & Nocton, G. Back to the future of organolanthanide chemistry. Chem. Sci. 14, 443–457 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afanasyev, O. I. et al. Cyclobutadiene metal complexes: a new class of highly selective catalysts. An application to direct reductive amination. ACS Catal. 6, 2043–2046 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z. & Petrukhina, M. A. Adding multiple electrons to helicenes: how they respond. Chem. Sci. 16, 468–479 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Spitler, E. L., Johnson, C. A. II & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masamune, S., Hojo, K., Hojo, K., Bigam, G. & Rabenstein, D. L. The geometry of [10]annulenes. J. Am. Chem. Soc. 93, 4966–4968 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 462, 819–821 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Moll, J. F., Pemberton, R. P., Gutierrez, M. G., Castro, C. & Karney, W. L. Configuration change in [14]annulene requires Möbius antiaromatic bond shifting. J. Am. Chem. Soc. 129, 274–275 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stawski, W. et al. The anti-aromatic dianion and aromatic tetraanion of [18]annulene. Nat. Chem. 16, 998–1002 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Białek, M. J., Hurej, K., Furuta, H. & Latos-Grażyński, L. Organometallic chemistry confined within a porphyrin-like framework. Chem. Soc. Rev. 52, 2082–2144 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vogel, E., Köcher, M., Schmickler, H. & Lex, J. Porphycene-a novel porphin isomer. Angew. Chem. Int. Ed. Engl. 25, 257–259 (1986).

    Article 

    Google Scholar
     

  • Grover, V. & Ravikanth, M. Coordination chemistry of porphycenes. Coord. Chem. Rev. 516, 215999 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Thakur, M. S. et al. Metal coordinated macrocyclic complexes in different chemical transformations. Coord. Chem. Rev. 471, 214739 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sessler, J. L., Gross, Z. & Furuta, H. Introduction: expanded, contracted, and isomeric porphyrins. Chem. Rev. 117, 2201–2202 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lash, T. D. Carbaporphyrinoid systems. Chem. Rev. 117, 2313–2446 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, B. et al. Syntheses, structures and reactivities of strained fused-ring metallaaromatics containing planar eleven-carbon chains with a shiftable metal carbyne bond. Nat. Commun. 14, 4378 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Byrne, P. A. & Gilheany, D. G. The mechanism of phosphonium ylide alcoholysis and hydrolysis: concerted addition of the O–H bond across the P=C bond. Chem. Eur. J. 22, 9140–9154 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Che, C.-M. et al. Triphenylphosphine reduction of dioxoosmium(VI) porphyrins. Crystal structures of bis(triphenylphosphine oxide) (octaethylporphinato)osmium(II) and bis(triphenylphosphine) (meso-tetraphenylporphinato)osmium(II). Inorg. Chem. 26, 3907–3911 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, C. et al. A metal-bridged tricyclic aromatic system: synthesis of osmium polycyclic aromatic complexes. Angew. Chem. Int. Ed. 53, 6232–6236 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, C. et al. σ-Aromaticity in an unsaturated ring: osmapentalene derivatives containing a metallacyclopropene unit. Angew. Chem. Int. Ed. 54, 3102–3106 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schleyer, P. V. R. & Pühlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Org. Lett. 4, 2873–2876 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fallah-Bagher-Shaidaei, H., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R. Which NICS aromaticity index for planar π rings is best? Org. Lett. 8, 863–866 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foroutan-Nejad, C. Is NICS a reliable aromaticity index for transition metal clusters? Theor. Chem. Acc. 134, 8 (2015).

    Article 

    Google Scholar
     

  • Sundholm, D., Fliegl, H. & Berger, R. J. F. Calculations of magnetically induced current densities: theory and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 639–678 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Knizia, G. & Klein, J. E. M. N. Electron flow in reaction mechanisms—revealed from first principles. Angew. Chem. Int. Ed. 54, 5518–5522 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gross, C. L. & Girolami, G. S. Synthesis and characterization of osmium (IV) polyhydride complexes of stoichiometry (C5Me5)OsH3(L). Crystal structures of (C5Me5)OsH3(AsPh3) and (C5Me5)OsH3(PPh3). Organometallics 25, 4792–4798 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D., Hua, Y. & Xia, H. Metallaaromatic chemistry: history and development. Chem. Rev. 120, 12994–13086 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments