Friday, January 10, 2025
No menu items!
HomeNatureMeta-analysis reveals global variations in plant diversity effects on productivity

Meta-analysis reveals global variations in plant diversity effects on productivity

  • Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Urgoiti, J. et al. No complementarity no gain—net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol. Lett. 25, 851–862 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, Y. et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wagg, C. et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 13, 7752 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594–1603 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Veryard, R. et al. Positive effects of tree diversity on tropical forest restoration in a field-scale experiment. Sci. Adv. 9, eadf0938 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawson, J. O. in Nitrogen-fixing Actinorhizal Symbioses (eds Pawlowski, K. & Newton, W. E.) 199–234 (Springer, 2008).

  • Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ackerly, D. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106, 19699–19706 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossman, J. J., Cavender-Bares, J., Reich, P. B., Montgomery, R. A. & Hobbie, S. E. Neighborhood diversity simultaneously increased and decreased susceptibility to contrasting herbivores in an early stage forest diversity experiment. J. Ecol. 107, 1492–1505 (2019).

    Article 

    Google Scholar
     

  • Jactel, H., Moreira, X. & Castagneyrol, B. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu. Rev. Entomol. 66, 277–296 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, S. et al. Towards mechanistic integration of the causes and consequences of biodiversity. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2024.02.008 (2024).

  • Weiner, J. Asymmetric competition in plant populations. Trends Ecol. Evol. 5, 360–364 (1990).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Godoy, O., Gómez-Aparicio, L., Matías, L., Pérez-Ramos, I. M. & Allan, E. An excess of niche differences maximizes ecosystem functioning. Nat. Commun. 11, 4180 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hisano, M. & Chen, H. Y. H. Spatial variation in climate modifies effects of functional diversity on biomass dynamics in natural forests across Canada. Glob. Ecol. Biogeogr. 29, 682–695 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecol. Biogeogr. 23, 311–322 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Luo, Y.-H. et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol. Lett. 22, 1449–1461 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kahmen, A., Renker, C., Unsicker, S. B. & Buchmann, N. Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87, 1244–1255 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ewel, J. J., Celis, G. & Schreeg, L. Steeply increasing growth differential between mixture and monocultures of tropical trees. Biotropica 47, 162–171 (2015).

    Article 

    Google Scholar
     

  • Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).

    Article 

    Google Scholar
     

  • Jucker, T. et al. Climate modulates the effects of tree diversity on forest productivity. J. Ecol. 104, 388–398 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pyron, R. A., Costa, G. C., Patten, M. A. & Burbrink, F. T. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biol. Rev. 90, 1248–1262 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wright, A. J., Barry, K. E., Lortie, C. J. & Callaway, R. M. Biodiversity and ecosystem functioning: have our experiments and indices been underestimating the role of facilitation? J. Ecol. 109, 1962–1968 (2021).

    Article 

    Google Scholar
     

  • Cong, W.-F. et al. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Furey, G. N. & Tilman, D. Plant chemical traits define functional and phylogenetic axes of plant biodiversity. Ecol. Lett. 26, 1394–1406 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Xiao, W., Chen, C., Chen, X., Huang, Z. & Chen, H. Y. H. Functional and phylogenetic diversity promote litter decomposition across terrestrial ecosystems. Glob. Ecol. Biogeogr. 29, 2261–2272 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, Y. & Chen, H. Y. H. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 103, 1245–1252 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 0063 (2017).

    Article 

    Google Scholar
     

  • Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).

    Article 
    MATH 

    Google Scholar
     

  • van Moorsel, S. J. et al. Evidence for rapid evolution in a grassland biodiversity experiment. Mol. Ecol. 28, 4097–4117 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Engelhardt, K. A. M. & Ritchie, M. E. The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 83, 2911–2924 (2002).

    Article 
    MATH 

    Google Scholar
     

  • Dee, L. E. et al. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fagan, M. E. et al. The expansion of tree plantations across tropical biomes. Nat. Sustain. 5, 681–688 (2022).

    Article 
    MATH 

    Google Scholar
     

  • O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695–1722 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J. 372, n71 (2021).

    Article 
    MATH 

    Google Scholar
     

  • de Wit, C. T. On competition. Verslagen Landbouwkundige Onderzoekingen 66, 1–82 (1960).

    MATH 

    Google Scholar
     

  • Chen, C., Xiao, W. & Chen, H. Y. H. Data and R codes for “Meta-analysis reveals global variations in plant diversity effects on productivity”. Figshare https://doi.org/10.6084/m9.figshare.27316062 (2024).

  • Keeling, H. C. & Phillips, O. L. The global relationship between forest productivity and biomass. Glob. Ecol. Biogeogr. 16, 618–631 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • taxize: Taxonomic information from around the web. R package version 0.9.100 https://CRAN.R-project.org/package=taxize (2022).

  • Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article 
    MATH 

    Google Scholar
     

  • Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371, 835–838 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cox, N. et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 605, 285–290 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).

    Article 

    Google Scholar
     

  • Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theoret. Pop. Biol. 21, 24–43 (1982).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • FD: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12.3 https://CRAN.R-project.org/package=FD (2023).

  • Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Viechtbauer, W. & Cheung, M. W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Rousseeuw, P. J. & Leroy, A. M. in Robust Regression and Outlier Detection (eds Rousseeuw, P. J. & Leroy, A. M.) 216–247 (Wiley, 1987).

  • Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 
    MATH 

    Google Scholar
     

  • Nakagawa, S., Yang, Y., Macartney, E. L., Spake, R. & Lagisz, M. Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences. Environ. Evid. 12, 8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kröel-Dulay, G. et al. Field experiments underestimate aboveground biomass response to drought. Nat. Ecol. Evol. 6, 540–545 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article 
    MATH 

    Google Scholar
     

  • Nakagawa, S. et al. A robust and readily implementable method for the meta-analysis of response ratios with and without missing standard deviations. Ecol. Lett. 26, 232–244 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Deeks, J. J., Higgins, J. P. & Altman, D. G. in Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J.P.T. et al.) 241–284 (Wiley, 2019).

  • Sterne, J. A. & Egger, M. Publication Bias in Meta-analysis: Prevention, Assessment and Adjustments (Wiley, 2005).

  • Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).

  • lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-35.5 https://CRAN.R-project.org/package=lme4 (2024).

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).

  • multcomp: Simultaneous inference in general parametric models. R package version 1.4-26 https://CRAN.R-project.org/package=multcomp (2024).

  • ggplot2: Create elegant data visualisations using the grammar of graphics. R package version 3.5.1 https://CRAN.R-project.org/package=ggplot2 (2024).

  • cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.3 https://CRAN.R-project.org/package=cowplot (2024).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • RELATED ARTICLES

    Most Popular

    Recent Comments