Friday, April 25, 2025
No menu items!
HomeNatureMelt focusing along lithosphere–asthenosphere boundary below Axial volcano

Melt focusing along lithosphere–asthenosphere boundary below Axial volcano

  • Audhkhasi, P. & Singh, S. C. Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean. Sci. Adv. 8, eabn5404 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kent, G. M., Harding, A. J. & Orcutt, J. A. Evidence for a smaller magma chamber beneath the East Pacific Rise at 9°30′ N. Nature 344, 650–653 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Lin, J. & Parmentier, E. M. Mechanisms of lithospheric extension at mid-ocean ridges. Geophys. J. Int. 96, 1–22 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Dunn, R. A dual-level magmatic system beneath the East Pacific Rise, 9°N. Geophys. Res. Lett. 49, e2022GL097732 (2022).

    Article 
    ADS 

    Google Scholar
     

  • France, L. et al. Quantifying the axial magma lens dynamics at the roof of oceanic magma reservoirs (dike/gabbro transition): Oman Drilling Project GT3 site survey. J. Geophys. Res. Solid Earth 126, e2020JB021496 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sigmundsson, F. New insights into magma plumbing along rift systems from detailed observations of eruptive behavior at Axial volcano. Geophys. Res. Lett. 43, e2016GL071884 (2016).

    Article 

    Google Scholar
     

  • Parker, R. L. & Oldenburg, D. W. Thermal model of ocean ridges. Nat. Phys. Sci. 242, 137–139 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Artemieva, I. The Lithosphere: An Interdisciplinary Approach (Cambridge Univ. Press, 2011).

  • McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of the oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gutenberg, B. On the layer of relatively low wave velocity at a depth of about 80 kilometers. Bull. Seismol. Soc. Am. 38, 121–148 (1948).

    Article 

    Google Scholar
     

  • Naif, S., Key, K., Constable, S. & Evans, R. L. Melt-rich channel observed at the lithosphere–asthenosphere boundary. Nature 495, 356–359 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz, R. F. & Weatherley, S. M. Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges. Earth Planet. Sci. Lett. 335–336, 226–237 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rychert, C. A., Harmon, N., Constable, S. & Wang, S. The nature of the lithosphere-asthenosphere boundary. J. Geophys. Res. Solid Earth 125, e2018JB016463 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mehouachi, F. & Singh, S. C. Water-rich sub-lithosphere melt channel in the equatorial Atlantic Ocean. Nat. Geosci. 11, 65–69 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Seismic evidence for melt-rich lithosphere-asthenosphere boundary beneath young slab at Cascadia. Nat. Commun. 15, 3504 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbotte, S. M. et al. Stacked magma lenses beneath mid-ocean ridges: Insights from new seismic observations and synthesis with prior geophysical and geologic findings. J. Geophys. Res. Solid Earth 126, e2020B021434 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Toomey, D. R., Purdy, G. M., Solomon, S. C. & Wilcock, W. S. D. The three-dimensional seismic velocity structure of the East Pacific Rise near latitude 9° 30′ N. Nature 347, 639–645 (1990).

    Article 
    ADS 

    Google Scholar
     

  • West, M., Menke, W. & Tolstoy, M. Focused magma supply at the intersection of the Cobb hotspot and the Juan de Fuca ridge. Geophys. Res. Lett. 30, e2003GL017104 (2003).

    Article 

    Google Scholar
     

  • Desonie, D. L. & Duncan, R. A. The Cobb-Eickelberg seamount chain: hotspot volcanism with mid-ocean ridge basalt affinity. J. Geophys. Res. Solid Earth 95, 12,697–12,711 (1990).

    Article 

    Google Scholar
     

  • Baker, E. T., Walker, S. L., Chadwick, W. W. Jr & Butterfield, D. Posteruption enhancement of hydrothermal activity: a 33-year, multieruption time series at Axial Seamount (Juan de Fuca Ridge). Geochem. Geophys. Geosyst. 20, 814–828 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chadwick, W. W. Jr et al. The 1998 eruption of Axial Seamount: new insights on submarine lava flow emplacement from high-resolution mapping. Geochem. Geophys. Geosyst. 14, 3939–3968 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Caress, D. W. et al. Repeat bathymetric surveys at 1-metre resolution of lava flows erupted at Axial Seamount in April 2011. Nat. Geosci. 5, 483–488 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chadwick, W. W. Jr et al. Voluminous eruption from a zoned magma body after an increase in supply rate at Axial Seamount. Geophys. Res. Lett. 43, 12,063–12,070 (2016).

    Article 

    Google Scholar
     

  • Clague, D. A. et al. High-resolution AUV mapping and targeted ROV observations of three historical lava flows at Axial Seamount. Oceanography 30, 82–89 (2017).

    Article 

    Google Scholar
     

  • Wilcock, W. S. D. et al. The recent volcanic history of Axial Seamount: geophysical insights into past eruption dynamics with an eye toward enhanced observations of future eruptions. Oceanography 31, 114–123 (2018).

    Article 

    Google Scholar
     

  • Arnulf, A. F., Harding, A. J., Kent, G. M. & Wilcock, W. S. D. Structure, seismicity, and accretionary processes at the hot spot-influenced Axial Seamount on the Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 123, 4618–4646 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Carbotte, S. M. et al. Stacked sills forming a deep melt-mush feeder conduit beneath Axial Seamount. Geology 48, 693–697 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Arnulf, A. F. et al. Anatomy of an active submarine volcano. Geology 42, 655–658 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lee, M. K., Carbotte, S. M. & Arnulf, A. F. Detection of magma beneath the northern and southern rift zones of Axial Seamount at the Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 23, e2022GC010426 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yang, J. et al. Asymmetric magma plumbing system beneath Axial Seamount based on full waveform inversion of seismic data. Nat. Commun. 15, 4767 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kent, G. M. et al. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities. Nature 406, 614–618 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Canales, J. P. et al. Network of off-axis melt bodies at the East Pacific Rise. Nat. Geosci. 5, 279–283 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Combier, V. et al. Three-dimensional geometry of axial magma chamber roof and faults at Lucky Strike volcano on the Mid-Atlantic Ridge. J. Geophys. Res. Solid Earth 120, 5379–5400 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hooft, E. E. E., Detrick, R. S. & Kent, G. M. Seismic structure and indicators of magma budget along the southern East Pacific Rise. J. Geophys. Res. Solid Earth 102, 27319–27340 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Phipps Morgan, J. P. & Chen, Y. J. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Purdy, G. M., Christeson, G. & Solomon, S. Relationship between spreading rate and the seismic structure of mid-ocean ridges. Nature 355, 815–817 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Wilcock, W. S. D. et al. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption. Science 354, 1395–1399 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldhauser, F. et al. Precision seismic monitoring and analysis at Axial Seamount using a real-time double-difference system. J. Geophys. Res. Solid Earth 125, e2019JB018796 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K. et al. Volcanic precursor revealed by machine learning offers new eruption forecasting capability. Geophys. Res. Lett. 51, e2024GL108631 (2024).

    Article 

    Google Scholar
     

  • Singh, S. C. et al. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature 394, 874–878 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Acocella, V., Cifelli, F. & Funiciello, R. Analogue models of collapse calderas and resurgent domes. J. Volcanol. Geotherm. Res. 104, 81–96 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slead, S. et al. Compartmentalization of Axial Seamount’s magma reservoir inferred by analytical and numerical deformation modeling with realistic geometry. J. Geophys. Res. Solid Earth 129, e2023JB028414 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Mutter, J. C. et al. Seismic images of active magma systems beneath the East Pacific Rise between 17°05′ and 17°35′S. Science 268, 391–395 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kent, G. M., Harding, A. J. & Orcutt, J. A. Distribution of magma beneath the East Pacific Rise near the 9°03′N overlapping spreading center from forward modeling of common depth point data. J. Geophys. Res. Solid Earth. 98, 13971–13995 (1993).

    Article 

    Google Scholar
     

  • Arnulf, A. F., Singh, S. C. & Pye, J. W. Seismic evidence of a complex multi-lens melt reservoir beneath the 9° N overlapping spreading center at the East Pacific Rise. Geophys. Res. Lett. 41, 6109–6115 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Koepke, J. et al. Petrography of the dike-gabbro transition at IODP Site 1256 (equatorial Pacific): the evolution of the granoblastic dikes. Geochem. Geophys. Geosyst. 9, e2008GC001939 (2008).

    Article 

    Google Scholar
     

  • Koepke, J., Berndt, J., Feig, S. T. & Holtz, F. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib. Mineral. Petrol. 153, 67–84 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kelemen, P. B., et al. Site GT1: layered cumulate gabbros and deep fault zones. In Proceedings of the Oman Drilling Project (eds Kelemen, P. B. et al.) https://doi.org/10.14379/OmanDP.proc.106.2020 (International Ocean Discovery Program, 2020).

  • France, L. et al. Contamination of MORB by anatexis of magma chamber roof rocks: constraints from a geochemical study of experimental melts and associated residues. Lithos 202–203, 120–137 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wanless, V. D., Perfit, M. R., Ridley, W. I. & Klein, E. Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J. Petrol. 51, 2377–2410 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bindeman, I. et al. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24, 227–232 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carley, T. L. et al. Petrogenesis of silicic magmas in Iceland through space and time: the isotopic record preserved in zircon and whole rocks. J. Geol. 128, 1–28 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dreyer, B. M., Clague, D. & Gill, J. Petrological variability of recent magmatism at Axial Seamount summit, Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 14, 4306–4333 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kelemen, P. B., Koga, K. & Shimizu, N. Geochemistry of gabbro sills in the crust–mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet. Sci. Lett. 146, 475–488 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Clague, D. A. et al. Chemical variations in the 1998, 2011, and 2015 lava flows from Axial Seamount, Juan de Fuca Ridge: Cooling during ascent, lateral transport, and flow. Geochem. Geophys. Geosyst. 19, 2915–2933 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jenkins, J. et al. Crustal formation on a spreading ridge above a mantle plume: receiver function imaging of the Icelandic crust. J. Geophys. Res. Solid Earth 123, 5190–5208 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophys. Res. Lett. 42, 2656–2663 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yang, A. et al. Os isotopic compositions of MORBs from the ultra-slow spreading Southwest Indian Ridge: constraints on the assimilation and fractional crystallization (AFC) processes. Lithos 179, 28–25 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chadwick, W. et al. Interpreted outlines as ASCII points of the 1998 lava flows and eruptive fissures at Axial Seamount, Juan de Fuca Ridge (investigator William Chadwick). Marine Geoscience Data System (MGDS) https://doi.org/10.1594/IEDA/323601 (2016).

  • Clague, D. et al. Interpreted outlines (version 2) as ASCII points of the 2011 lava flows and eruptive fissures at Axial Seamount, Juan de Fuca Ridge (investigator David Clague). Marine Geoscience Data System (MGDS) https://doi.org/10.1594/IEDA/324416 (2018).

  • Clague, D. et al. Interpreted outlines (version 2) as ASCII points of the 2015 lava flows and eruptive fissures at Axial Seamount, Juan de Fuca Ridge (investigator David Clague). Marine Geoscience Data System (MGDS) https://doi.org/10.1594/IEDA/324418 (2018).

  • Bekara, M. & van der Baan, M. High-amplitude noise detection by the expectation-maximization algorithm with application to swell-noise attenuation. Geophysics 75, V39–V49 (2010).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments