Friday, June 6, 2025
No menu items!
HomeNatureMaternal iron deficiency causes male-to-female sex reversal in mouse embryos

Maternal iron deficiency causes male-to-female sex reversal in mouse embryos

  • Kuroki, S. et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 341, 1106–1109 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuroki, S. et al. Rescuing the aberrant sex development of H3K9 demethylase Jmjd1a-deficient mice by modulating H3K9 methylation balance. PLoS Genet. 13, e1007034 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koopman, P. et al. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kashimada, K. & Koopman, P. Sry: the master switch in mammalian sex determination. Development 137, 3921–3930 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stévant, I. et al. Deciphering cell lineage specification during male sex determination with single-cell RNA sequencing. Cell Rep. 22, 1589–1599 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Galy, B., Conrad, M. & Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell Biol. 25, 133–155 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayère, C. et al. Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Sci. Adv. 8, eabm0972 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28, 764–778 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirayama, T., Okuda, K. & Nagasawa, H. A highly selective turn-on fluorescent probe for iron(ii) to visualize labile iron in living cells. Chem. Sci. 4, 1250–1256 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Qian, Z. M., Li, H., Sun, H. & Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54, 561–587 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levy, J. E., Jin, O., Fujiwara, Y., Kuo, F. & Andrews, N. C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat. Genet. 21, 396–399 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Z. et al. Iron homeostasis determines fate of human pluripotent stem cells via glycerophospholipids–epigenetic circuit. Stem Cells 37, 489–503 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kidokoro, T. et al. Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev. Biol. 278, 511–525 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takase, S. et al. A specific G9a inhibitor unveils BGLT3 lncRNA as a universal mediator of chemically induced fetal globin gene expression. Nat. Commun. 14, 23 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harima, H. et al. Deferasirox, a novel oral iron chelator, shows antiproliferative activity against pancreatic cancer in vitro and in vivo. BMC Cancer 16, 702 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggers, S. & Sinclair, A. Mammalian sex determination—insights from humans and mice. Chromosome Res. 20, 215–238 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munger, S. C. & Capel, B. Sex and the circuitry: progress toward a systems-level understanding of vertebrate sex determination. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 401–412 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashamboo, A. & McElreavey, K. Human sex-determination and disorders of sex-development (DSD). Semin. Cell Dev. Biol. 45, 77–83 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capel, B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 18, 675–689 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okashita, N., Maeda, R. & Tachibana, M. CDYL reinforces male gonadal sex determination through epigenetically repressing Wnt4 transcription in mice. Proc. Natl Acad. Sci. USA 120, e2221499120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilkinson, N. & Pantopoulos, K. The IRP/IRE system in vivo: insights from mouse models. Front. Pharmacol. 5, 176 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z. D. & Tan, E. K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 12, 75 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyer, S., Kristensen, M. M., Jensen, K. S., Johansen, J. V. & Staller, P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem. 283, 36542–36552 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krieg, A. J. et al. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1α enhances hypoxic gene expression and tumor growth. Mol. Cell. Biol. 30, 344–353 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mimura, I. et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol. Cell. Biol. 32, 3018–3032 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoefele, J. et al. Disorders of sex development and Diamond–Blackfan anemia: is there an association? Pediatr. Nephrol. 25, 1255–1261 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Granada, M. L. & Audi, L. The laboratory in the multidisciplinary diagnosis of differences or disorders of sex development (DSD): (III) Biochemical and genetic markers in the 46,XY; (IV) Proposals for the differential diagnosis of DSD. Adv. Lab. Med. 2, 494–504 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, M. & Takemoto, T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 5, 11315 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okashita, N. et al. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development 141, 269–280 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda, R. & Tachibana, M. HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Rep. 23, e53581 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okashita, N., Kuroki, S., Maeda, R. & Tachibana, M. TET2 catalyzes active DNA demethylation of the Sry promoter and enhances its expression. Sci. Rep. 9, 13462 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyawaki, S. et al. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 370, 121–124 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukaide, T. et al. Histological detection of catalytic ferrous iron with the selective turn-on fluorescent probe RhoNox-1 in a Fenton reaction-based rat renal carcinogenesis model. Free Radic. Res. 48, 990–995 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matoba, S. et al. Establishment of testis-specific SOX9 activation requires high-glucose metabolism in mouse sex differentiation. Dev. Biol. 324, 76–87 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, K. et al. The embryonic ontogeny of the gonadal somatic cells in mice and monkeys. Cell Rep. 35, 109075 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments