Thursday, February 27, 2025
No menu items!
HomeNatureMass-spectrometry-based proteomics: from single cells to clinical applications

Mass-spectrometry-based proteomics: from single cells to clinical applications

  • Ball, P. How Life Works: A User’s Guide to the New Biology (Univ. Chicago Press, 2024).

  • Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015). This landmark study presents a comprehensive map of the human proteome across 32 tissues and organs, providing millions of IHC-based pictures of health and disease.

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5, e15004 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One 9, e95192 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell. Proteomics 18, 1027–1035 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, Y. et al. High-throughput proteomic analysis of FFPE tissue samples facilitates tumor stratification. Mol. Oncol. 13, 2305–2328 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Xiao, Q. et al. High-throughput proteomics and AI for cancer biomarker discovery. Adv. Drug Deliv. Rev. 176, 113844 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hendy, J. Ancient protein analysis in archaeology. Sci. Adv. 7, eabb9314 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mylopotamitaki, D. et al. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature 626, 341–346 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, Y., Gao, C. & Kuster, B. On the potential of micro-flow LC–MS/MS in proteomics. Expert Rev. Proteomics 19, 153–164 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteomics 17, 2284–2296 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Muller, J. B. et al. The proteome landscape of the kingdoms of life. Nature 582, 592–596 (2020).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Makarov, A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72, 1156–1162 (2000).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Eliuk, S. & Makarov, A. Evolution of Orbitrap mass spectrometry instrumentation. Annu. Rev. Anal. Chem. 8, 61–80 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Meier, F., Park, M. A. & Mann, M. Trapped ion mobility spectrometry and parallel accumulation–serial fragmentation in proteomics. Mol. Cell. Proteomics 20, 100138 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart, H. I. et al. Parallelized acquisition of Orbitrap and Astral analyzers enables high-throughput quantitative analysis. Anal. Chem. 95, 15656–15664 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guzman, U. H. et al. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat. Biotechnol. 42, 1855–1866 (2024). Together with Stewart et al. (2023), this study introduces the Astral mass analyser for proteomics use—a novel multi-reflecting TOF MS that enables ultra-fast and highly sensitive proteomics, allowing for the quantification of nearly 10,000 proteins in single-shot analyses of human cell lines.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11, O111.016717 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Meier, F. et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat. Methods 17, 1229–1236 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rost, H. L. et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32, 219–223 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bruderer, R. et al. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol. Cell. Proteomics 16, 2296–2309 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020). This landmark paper introducing DIA-NN, a deep-neural-network-based software for analysing DIA proteomics data, greatly improved peptide identification and quantification for more comprehensive and precise proteome profiling.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Data-independent acquisition mass spectrometry-based proteomics and software tools: a glimpse in 2020. Proteomics 20, e1900276 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • The, M., Samaras, P., Kuster, B. & Wilhelm, M. Reanalysis of ProteomicsDB using an accurate, sensitive, and scalable false discovery rate estimation approach for protein groups. Mol. Cell. Proteomics 21, 100437 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strauss, M. T. et al. AlphaPept: a modern and open framework for MS-based proteomics. Nat. Commun. 15, 2168 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, Z. et al. High-throughput proteomics of nanogram-scale samples with Zeno SWATH MS. eLife 11, e83947 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skowronek, P. et al. Synchro-PASEF allows precursor-specific fragment ion extraction and interference removal in data-independent acquisition. Mol. Cell. Proteomics 22, 100489 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Baker, M. S. et al. Accelerating the search for the missing proteins in the human proteome. Nat. Commun. 8, 14271 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Perdigao, N. et al. Unexpected features of the dark proteome. Proc. Natl Acad. Sci. USA 112, 15898–15903 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kustatscher, G. et al. Understudied proteins: opportunities and challenges for functional proteomics. Nat. Methods 19, 774–779 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hellinger, R. et al. Peptidomics. Nat. Rev. Methods Primers 3, 25 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20, 2964–2972 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ting, L., Rad, R., Gygi, S. P. & Haas, W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogrebe, A. et al. Benchmarking common quantification strategies for large-scale phosphoproteomics. Nat. Commun. 9, 1045 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cheung, T. K. et al. Defining the carrier proteome limit for single-cell proteomics. Nat. Methods 18, 76–83 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B. & Aebersold, R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picotti, P. & Aebersold, R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 9, 555–566 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wichmann, C. et al. MaxQuant.Live enables global targeting of more than 25,000 peptides. Mol. Cell. Proteomics 18, 982–994 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mann, M., Kumar, C., Zeng, W. F. & Strauss, M. T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 12, 759–770 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gyori, B. M. & Vitek, O. Beyond protein lists: AI-assisted interpretation of proteomic investigations in the context of evolving scientific knowledge. Nat. Methods 21, 1387–1389 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Santos, A. et al. A knowledge graph to interpret clinical proteomics data. Nat. Biotechnol. 40, 692–702 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bekker-Jensen, D. B. et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst. 4, 587–599 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sinitcyn, P. et al. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. 41, 1776–1786 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lundberg, E. et al. Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol. 6, 450 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Adhikari, S. et al. A high-stringency blueprint of the human proteome. Nat. Commun. 11, 5301 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, J. et al. Pervasive functional translation of noncanonical human open reading frames. Science 367, 1140–1146 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Knecht, S. et al. An introduction to analytical challenges, approaches, and applications in mass spectrometry-based secretomics. Mol. Cell. Proteomics 22, 100636 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • van Mierlo, G. & Vermeulen, M. Chromatin proteomics to study epigenetics—challenges and opportunities. Mol. Cell. Proteomics 20, 100056 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ross, A. B., Langer, J. D. & Jovanovic, M. Proteome turnover in the spotlight: approaches, applications, and perspectives. Mol. Cell. Proteomics 20, 100016 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Azimifar, S. B., Nagaraj, N., Cox, J. & Mann, M. Cell-type-resolved quantitative proteomics of murine liver. Cell Metab. 20, 1076–1087 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacCoss, M. J. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat. Methods 20, 339–346 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, T., Ye, Z. & Wang, L. Genome wide approaches to identify protein–DNA interactions. Curr. Med. Chem. 26, 7641–7654 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucero, B., Francisco, K. R., Liu, L. J., Caffrey, C. R. & Ballatore, C. Protein–protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies. Trends Pharmacol. Sci. 44, 474–488 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaelis, A. C. et al. The social and structural architecture of the yeast protein interactome. Nature 624, 192–200 (2023). This comprehensive study maps the near-complete protein–protein interaction network in yeast, providing insights into the social and structural architecture of an entire proteome and revealing fundamental principles of protein complex organization.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hiatt, J. et al. A functional map of HIV–host interactions in primary human T cells. Nat. Commun. 13, 1752 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Thorne, L. G. et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature 602, 487–495 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shah, P. S. et al. Comparative flavivirus–host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175, 1931–1945 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • Riley, N. M. & Coon, J. J. Phosphoproteomics in the age of rapid and deep proteome profiling. Anal. Chem. 88, 74–94 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteomics 21, 100279 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chang, A., Leutert, M., Rodriguez-Mias, R. A. & Villen, J. Automated enrichment of phosphotyrosine peptides for high-throughput proteomics. J. Proteome Res. 22, 1868–1880 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poirson, J. et al. Proteome-scale discovery of protein degradation and stabilization effectors. Nature 628, 878–886 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lund, P. J. et al. Isotopic labeling and quantitative proteomics of acetylation on histones and beyond. Methods Mol. Biol. 1977, 43–70 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Clague, M. J., Urbe, S. & Komander, D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat. Rev. Mol. Cell Biol. 20, 338–352 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Needham, E. J., Parker, B. L., Burykin, T., James, D. E. & Humphrey, S. J. Illuminating the dark phosphoproteome. Sci. Signal. 12, eaau8645 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zecha, J. et al. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 380, 93–101 (2023). This comprehensive study maps dose- and time-resolved changes in the phosphoproteome after drug treatments, providing insights into drug-induced signalling dynamics and revealing principles of cellular adaptation to pharmacological perturbations.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, S. A. et al. FLEXIQinase, a mass spectrometry-based assay, to unveil multikinase mechanisms. Nat. Methods 9, 504–508 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mair, W. et al. FLEXITau: quantifying post-translational modifications of tau protein in vitro and in human disease. Anal. Chem. 88, 3704–3714 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713 (2020). This groundbreaking study comprehensively analyses tau post-translational modifications in Alzheimer’s disease, revealing distinct modification profiles that correlate with disease progression and patient heterogeneity, and providing new insights into tau pathology, diagnostics and potential therapeutic targets.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Robles, M. S., Humphrey, S. J. & Mann, M. Phosphorylation Is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 25, 118–127 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Prus, G., Satpathy, S., Weinert, B. T., Narita, T. & Choudhary, C. Global, site-resolved analysis of ubiquitylation occupancy and turnover rate reveals systems properties. Cell 187, 2875–2892 (2024). A comprehensive global analysis of human ubiquitylation stoichiometry and turnover rates, revealing unexpectedly low occupancy levels and providing insights into the dynamics and regulation of this crucial PTM.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochoa, D. et al. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38, 365–373 (2020). This large-scale bioinformatic study maps the functional landscape of protein phosphorylation in human cells, integrating phosphoproteomics data with various functional assays to predict the functional effect of phosphorylation events.

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bludau, I. et al. The structural context of posttranslational modifications at a proteome-wide scale. PLoS Biol. 20, e3001636 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shrestha, P., Kandel, J., Tayara, H. & Chong, K. T. Post-translational modification prediction via prompt-based fine-tuning of a GPT-2 model. Nat. Commun. 15, 6699 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vieitez, C. et al. High-throughput functional characterization of protein phosphorylation sites in yeast. Nat. Biotechnol. 40, 382–390 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ma, R., Meng, H., Wiebelhaus, N. & Fitzgerald, M. C. Chemo-selection strategy for limited proteolysis experiments on the proteomic scale. Anal. Chem. 90, 14039–14047 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pepelnjak, M., de Souza, N. & Picotti, P. Detecting protein–small molecule interactions using limited proteolysis–mass spectrometry (LiP–MS). Trends Biochem. Sci. 45, 919–920 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piersimoni, L., Kastritis, P. L., Arlt, C. & Sinz, A. Cross-linking mass spectrometry for investigating protein conformations and protein–protein interactions—a method for all seasons. Chem. Rev. 122, 7500–7531 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zheng, J., Strutzenberg, T., Pascal, B. D. & Griffin, P. R. Protein dynamics and conformational changes explored by hydrogen/deuterium exchange mass spectrometry. Curr. Opin. Struct. Biol. 58, 305–313 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Masson, G. R. et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat. Methods 16, 595–602 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Marciano, D. P., Dharmarajan, V. & Griffin, P. R. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr. Opin. Struct. Biol. 28, 105–111 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, C. & Huang, L. New advances in cross-linking mass spectrometry toward structural systems biology. Curr. Opin. Chem. Biol. 76, 102357 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, Z. A. & Rappsilber, J. Protein structure dynamics by crosslinking mass spectrometry. Curr. Opin. Struct. Biol. 80, 102599 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenz, S. et al. Reliable identification of protein–protein interactions by crosslinking mass spectrometry. Nat. Commun. 12, 3564 (2021). This paper introduces an integrated workflow for cross-linking MS, combining optimized sample preparation, chromatography and data analysis to enhance the depth and reliability of protein interaction mapping, advancing our understanding of protein complex structures and cellular organization.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wheat, A. et al. Protein interaction landscapes revealed by advanced in vivo cross-linking–mass spectrometry. Proc. Natl Acad. Sci. USA 118, e2023360118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jiang, P. L. et al. A membrane-permeable and immobilized metal affinity chromatography (IMAC) enrichable cross-linking reagent to advance in vivo cross-linking mass spectrometry. Angew. Chem. Int. Ed. 61, e202113937 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mendes, M. L. et al. An integrated workflow for crosslinking mass spectrometry. Mol. Syst. Biol. 15, e8994 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clasen, M. A. et al. Proteome-scale recombinant standards and a robust high-speed search engine to advance cross-linking MS-based interactomics. Nat. Methods 21, 2327–2335 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stahl, K., Graziadei, A., Dau, T., Brock, O. & Rappsilber, J. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning. Nat. Biotechnol. 41, 1810–1819 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piazza, I. et al. A map of protein–metabolite interactions reveals principles of chemical communication. Cell 172, 358–372 (2018). This groundbreaking study presents a comprehensive map of protein–metabolite interactions in yeast, revealing widespread and functionally important associations between proteins and small molecules and providing insights into metabolite-mediated cellular regulation and communication principles.

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shuken, S. R. et al. Limited proteolysis–mass spectrometry reveals aging-associated changes in cerebrospinal fluid protein abundances and structures. Nat. Aging 2, 379–388 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 184, 6207–6210 (2021). This first study to combine cryo-EM with MS-based proteomics studies tau filaments from the brains of individuals with Alzheimer’s disease to shed light on the molecular basis of tau pathology associated with PTMs and the structural diversity of tauopathy strains.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Meissner, F., Geddes-McAlister, J., Mann, M. & Bantscheff, M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat. Rev. Drug Discov. 21, 637–654 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Le Sueur, C., Hammaren, H. M., Sridharan, S. & Savitski, M. M. Thermal proteome profiling: insights into protein modifications, associations, and functions. Curr. Opin. Chem. Biol. 71, 102225 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ng, C. S. C. & Banik, S. M. Recent advances in induced proximity modalities. Curr. Opin. Chem. Biol. 67, 102107 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberger, F. A., Thielert, M. & Mann, M. Making single-cell proteomics biologically relevant. Nat. Methods 20, 320–323 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. Y. et al. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis. Anal. Chem. 90, 5430–5438 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhu, Y. et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 9, 882 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebreyesus, S. T. et al. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nat. Commun. 13, 37 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunner, A. D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. Biotechnol. 41, 50–59 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Thielert, M., Weiss, C. A. M., Mann, M. & Rosenberger, F. A. Spatial proteomics of single hepatocytes with multiplexed data-independent acquisition (mDIA). Methods Mol. Biol. 2817, 97–113 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Ye, Z. et al. Enhanced sensitivity and scalability with a Chip-Tip workflow enables deep single-cell proteomics. Nat. Methods https://doi.org/10.1038/s41592-024-02558-2 (2025).

  • Ye, Z. et al. One-Tip enables comprehensive proteome coverage in minimal cells and single zygotes. Nat. Commun. 15, 2474 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ctortecka, C. et al. Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications. Nat. Commun. 15, 5707 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022). This study introduces DVP, which combines AI-driven image analysis with high-resolution mass spectrometry to map protein expression patterns in specific cell types within complex tissues, enabling exceptional spatial resolution for functional studies in proteomics.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nordmann, T. M. et al. Spatial proteomics identifies JAKi as treatment for a lethal skin disease. Nature 635, 1001–1009 (2024). This pioneering single-cell-type spatial proteomics study goes all the way from discovering the cause of a lethal disease to finding a cure for it, marking the dawn of spatial medicine.

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dong, Z. et al. Spatial proteomics of single cells and organelles on tissue slides using filter-aided expansion proteomics. Nat. Commun. 15, 9378 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ma, M. et al. In-depth mapping of protein localizations in whole tissue by micro-scaffold assisted spatial proteomics (MASP). Nat. Commun. 13, 7736 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Surinova, S. et al. On the development of plasma protein biomarkers. J. Proteome Res. 10, 5–16 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geyer, P. E., Holdt, L. M., Teupser, D. & Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 13, 942 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, L. et al. Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat. Med. 28, 1277–1287 (2022). A high-throughput plasma proteomics approach that identifies novel protein biomarkers for non-invasive diagnosis and staging of alcohol-related liver disease, outperforming existing clinical tests and demonstrating the potential of MS-based proteomics for diagnostic tools.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cai, X. et al. Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome. Cell Rep. Med. 4, 101172 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Messner, C. B. et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst. 11, 11–24 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mi, Y. et al. High-throughput mass spectrometry maps the sepsis plasma proteome and differences in patient response. Sci. Transl. Med. 16, eadh0185 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Heil, L. R. et al. Evaluating the performance of the Astral mass analyzer for quantitative proteomics using data-independent acquisition. J. Proteome Res. 22, 3290–3300 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Simpson, R. J., Lim, J. W., Moritz, R. L. & Mathivanan, S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteomics 6, 267–283 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viode, A. et al. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci. Adv. 9, eadf9717 (2023). This study introduces a simple, time- and cost-effective high-throughput depletion strategy for deep plasma proteomics that enables the analysis of thousands of plasma proteins at an impressive coverage.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, B. B., Suhre, K. & Gibson, B. W. Promises and challenges of populational proteomics in health and disease. Mol. Cell. Proteomics 23, 100786 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bader, J. M., Albrecht, V. & Mann, M. MS-based proteomics of body fluids: the end of the beginning. Mol. Cell. Proteomics 22, 100577 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Katz, D. H. et al. Proteomic profiling platforms head to head: leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. Sci. Adv. 8, eabm5164 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geyer, P. E. et al. The circulating proteome—technological developments, current challenges, and future trends. J. Proteome Res. 23, 5279–5295 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bi, X. et al. Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19. Cell Rep. 38, 110271 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Virreira Winter, S. et al. Urinary proteome profiling for stratifying patients with familial Parkinson’s disease. EMBO Mol. Med. 13, e13257 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kentsis, A. et al. Detection and diagnostic value of urine leucine-rich α-2-glycoprotein in children with suspected acute appendicitis. Ann. Emerg. Med. 60, 78–83 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, S. et al. Urine proteomics for noninvasive monitoring of biomarkers in bronchopulmonary dysplasia. Neonatology 119, 193–203 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tao, Q. Q. et al. Alzheimer’s disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling. Innovation 5, 100544 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mani, D. R. et al. Cancer proteogenomics: current impact and future prospects. Nat. Rev. Cancer 22, 298–313 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, Y. et al. Proteogenomic data and resources for pan-cancer analysis. Cancer Cell 41, 1397–1406 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Guo, T. et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat. Med. 21, 407–413 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cai, X. et al. High-throughput proteomic sample preparation using pressure cycling technology. Nat. Protoc. 17, 2307–2325 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kosack, C. S., Page, A. L. & Klatser, P. R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 95, 639–645 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Han, C. L. et al. Lessons learned: establishing a CLIA-equivalent laboratory for targeted mass spectrometry assays – navigating the transition from research to clinical practice. Clin. Proteomics 21, 12 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Y. et al. Artificial intelligence defines protein-based classification of thyroid nodules. Cell Discov. 8, 85 (2022). This multi-centre study uses AI and proteomics to develop a highly accurate protein-based classification system for thyroid nodules, showing that AI can be integrated with molecular profiling for improved cancer diagnostics and personalized medicine.

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jiang, Y. et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567, 257–261 (2019). This large-scale proteogenomic study of early-stage hepatocellular carcinoma identifies new molecular subtypes and potential therapeutic targets, and proposed proteomics-driven precision medicine.

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Clarke, W. & Nair, H. Mass Spectrometry for the Clinical Laboratory (Academic Press, 2017).

  • van Zalm, P. W. et al. Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer’s disease biomarkers. Cell Rep. Med. 4, 101005 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Qian, L. et al. AI-empowered perturbation proteomics for complex biological systems. Cell Genom. 4, 100691 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schaar, A. C. et al. Nicheformer: a foundation model for single-cell and spatial omics. Preprint at bioRxiv https://doi.org/10.1101/2024.04.15.589472 (2024).

  • He, F. et al. Ï€-Hub: the proteomic navigator of the human body. Nature 636, 322–331 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments