Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).
Bachmann, O. & Bergantz, G. W. Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Rev. Mineral. Geochem. 69, 651–674 (2008).
Cooper, K. M. & Kent, A. J. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).
Laumonier, M., Gaillard, F., Muir, D., Blundy, J. & Unsworth, M. Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet. Sci. Lett. 457, 173–180 (2017).
Holness, M. B., Stock, M. J. & Geist, D. Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves. Philos. Trans. R. Soc. A 377, 20180006 (2019).
Weber, G., Caricchi, L., Arce, J. L. & Schmitt, A. K. Determining the current size and state of subvolcanic magma reservoirs. Nat. Commun. 11, 5477 (2020).
Andújar, J. et al. Experimental evidence for the shallow production of phonolitic magmas at Mayotte. C. R. Geosci. 354, 225–256 (2023).
Berthod, C. et al. The 2018-ongoing Mayotte submarine eruption: magma migration imaged by petrological monitoring. Earth Planet. Sci. Lett. 571, 117085 (2021).
Berthod, C. et al. Mantle xenolith-bearing phonolites and basanites feed the active volcanic ridge of Mayotte (Comoros archipelago, SW Indian Ocean). Contrib. Mineral. Petrol. 176, 75 (2021).
Feuillet, N. et al. Birth of a large volcanic edifice offshore Mayotte via lithosphere-scale dyke intrusion. Nat. Geosci. 14, 787–795 (2021).
White, S. M., Crisp, J. A. & Spera, F. J. Long‐term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosystems 7, 2005GC001002 (2006).
Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. 10, 970131 (2022).
Chave, A. D. & Jones, A. G. The Magnetotelluric Method: Theory and Practice (Cambridge Univ. Press, 2012).
Yoshino, T. in Magmas Under Pressure (eds Kono, Y. & Sanloup, C.) 281–319 (Elsevier, 2018).
Johnson, N. E. et al. Magma imaged magnetotellurically beneath an active and an inactive magmatic segment in Afar, Ethiopia. Geol. Soc. Lond. Spec. Publ. 420, 105–125 (2016).
Hill, G. J. et al. Trans-crustal structural control of CO2-rich extensional magmatic systems revealed at Mount Erebus Antarctica. Nat. Commun. 13, 2989 (2022).
Comeau, M. J., Unsworth, M. J. & Cordell, D. New constraints on the magma distribution and composition beneath Volcán Uturuncu and the southern Bolivian Altiplano from magnetotelluric data. Geosphere 12, 1391–1421 (2016).
Ichiki, M. et al. Magma reservoir beneath Azumayama Volcano, NE Japan, as inferred from a three-dimensional electrical resistivity model explored by means of magnetotelluric method. Earth Planets Space 73, 150 (2021).
Isaia, R. et al. 3D magnetotelluric imaging of a transcrustal magma system beneath the Campi Flegrei caldera, southern Italy. Commun. Earth Environ. 6, 213 (2025).
Key, K., Constable, S., Liu, L. & Pommier, A. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).
Pommier, A. & Le-Trong, E. “SIGMELTS”: a web portal for electrical conductivity calculations in geosciences. Comput. Geosci. 37, 1450–1459 (2011).
Thinon, I. et al. Volcanism and tectonics unveiled in the Comoros archipelago between Africa and Madagascar. C. R. Geosci. 354, 7–34 (2022).
Masquelet, C. et al. Intra-oceanic emplacement of the Comoros archipelago through inherited fracture zones. Tectonophysics 882, 230348 (2024).
Rusquet, A. et al. Phases of magmatism and tectonics along the Madagascar–Comoros volcanic chain, and synchronous changes in the kinematics of the Lwandle and Somalia plates. J. Geophys. Res. Solid Earth 130, e2024JB029488 (2025).
Lacombe, T. et al. Late Quaternary explosive phonolitic volcanism of Petite-Terre (Mayotte, Western Indian Ocean). Bull. Volcanol. 86, 11 (2024).
Nehlig, P. et al. Notice explicative, carte géologique France (1/30 000), feuille Mayotte (1179). Carte géologique par Lacquement, F., Nehlig, P. & Bernard, J. (BRGM Éditions, Service géologique national, Orléans, 2013).
Pelleter, A.-A. et al. Melilite-bearing lavas in Mayotte (France): an insight into the mantle source below the Comores. Lithos 208, 281–297 (2014).
Lemoine, A. et al. The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption. Geophys. J. Int. 223, 22–44 (2020).
Michon, L., Famin, V. & Quidelleur, X. Evolution of the East African Rift System from trap-scale to plate-scale rifting. Earth Sci. Rev. 231, 104089 (2022).
Class, C., Goldstein, S. L., Stute, M., Kurz, M. D. & Schlosser, P. Grand Comore Island: a well-constrained “low 3He/4He” mantle plume. Earth Planet. Sci. Lett. 233, 391–409 (2005).
Chauvel, C. et al. Fani Maoré, a new “young HIMU” volcano with extreme geochemistry. Earth Planet. Sci. Lett. 626, 118529 (2024).
Famin, V., Michon, L. & Bourhane, A. The Comoros archipelago: a right-lateral transform boundary between the Somalia and Lwandle plates. Tectonophysics 789, 228539 (2020).
Mercury, N. et al. Onset of a submarine eruption east of Mayotte, Comoros archipelago: the first ten months seismicity of the seismo-volcanic sequence (2018–2019). C. R. Geosci. 354, 105–136 (2022).
Lavayssière, A. et al. A new 1D velocity model and absolute locations image the Mayotte seismo-volcanic region. J. Volcanol. Geotherm. Res. 421, 107440 (2022).
REVOSIMA Bulletin de Mai 2023 de l’activité sismo-volcanique à Mayotte (IPGP, Université de Paris, OVPF, BRGM, Ifremer, CNRS, 2023); https://www.ipgp.fr/wp-content/uploads/2023/06/Revosima_bull_20230606.pdf.
Cesca, S. et al. Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation. Nat. Geosci. 13, 87–93 (2020).
Berthod, C. et al. Temporal magmatic evolution of the Fani Maoré submarine eruption 50 km east of Mayotte revealed by in situ sampling and petrological monitoring. C. R. Geosci. 354, 195–223 (2022).
Jacques, E. et al. Ring faulting and piston collapse in the mantle sustained the largest submarine eruption ever documented. Earth Planet. Sci. Lett. 647, 119026 (2024).
Dofal, A., Fontaine, F. R., Michon, L., Barruol, G. & Tkalčić, H. Nature of the crust beneath the islands of the Mozambique Channel: constraints from receiver functions. J. Afr. Earth. Sci. 184, 104379 (2021).
Foix, O. et al. Offshore Mayotte volcanic plumbing revealed by local passive tomography. J. Volcanol. Geotherm. Res. 420, 107395 (2021).
Sifré, D. et al. Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014).
Mittal, T., Jordan, J. S., Retailleau, L., Beauducel, F. & Peltier, A. Mayotte 2018 eruption likely sourced from a magmatic mush. Earth Planet. Sci. Lett. 590, 117566 (2022).
Jorry, S. MAYOBS2 French Oceanographic Cruise, RV Marion Dufresne SISMER Database (French Oceanographic Fleet, 2019).
Darnet, M., Wawrzyniak, P., Tarits, P., Hautot, S. & d’Eu, J.-F. Mapping the geometry of volcanic systems with magnetotelluric soundings: results from a land and marine magnetotelluric survey performed during the 2018–2019 Mayotte seismovolcanic crisis. J. Volcanol. Geotherm. Res. 406, 107046 (2020).
Wawrzyniak, P. et al. Dataset deposit for Nature paper Magnetotelluric evidence for a melt-rich magmatic reservoir beneath Mayotte. BRGM https://doi.org/10.18144/605e087b-74a7-4c3b-b733-a5e6167bea0a (2025).
Chave, A. D. & Thomson, D. J. Bounded influence magnetotelluric response function estimation. Geophys. J. Int. 157, 988–1006 (2004).
Smaï, F. & Wawrzyniak, P. Razorback, an open source Python library for robust processing of magnetotelluric data. Front. Earth Sci. 8, 296 (2020).
Hautot, S. et al. Deep structure of the Baringo Rift Basin (central Kenya) from three‐dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys. Res. Solid Earth 105, 23493–23518 (2000).
Hautot, S. et al. 3-D magnetotelluric inversion and model validation with gravity data for the investigation of flood basalts and associated volcanic rifted margins. Geophys. J. Int. 170, 1418–1430 (2007).
Miensopust, M. P., Queralt, P., Jones, A. G. & 3D. MT modellers. Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison. Geophys. J. Int. 193, 1216–1238 (2013).
Ars, J.-M. et al. Joint inversion of gravity and surface wave data constrained by magnetotelluric: application to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics 80, 56–68 (2019).
Booker, J. R. The magnetotelluric phase tensor: a critical review. Surv. Geophys. 35, 7–40 (2014).
Caricchi, L., Gaillard, F., Mecklenburgh, J. & Le Trong, E. Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet. Sci. Lett. 302, 81–94 (2011).
Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).
Guo, X. et al. Electrical conductivity of CO2 and H2O‐bearing nephelinitic melt. J. Geophys. Res. Solid Earth 126, e2020JB019569 (2021).
Iacono-Marziano, G., Morizet, Y., Le Trong, E. & Gaillard, F. New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012).
Di Genova, D. et al. Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem. Geol. 475, 76–86 (2017).
Jiménez-Mejías, M., Andújar, J., Scaillet, B. & Casillas, R. Experimental determination of H2O and CO2 solubilities of mafic alkaline magmas from Canary Islands. C. R. Geosci. 353, 289–314 (2021).
Gaillard, F. & Marziano, G. I. Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition. J. Geophys. Res. Solid Earth 110, 2004JB003282 (2005).
Blatter, D., Naif, S., Key, K. & Ray, A. A plume origin for hydrous melt at the lithosphere–asthenosphere boundary. Nature 604, 491–494 (2022).
Miller, K. J., Zhu, W., Montési, L. G. & Gaetani, G. A. Experimental quantification of permeability of partially molten mantle rock. Earth Planet. Sci. Lett. 388, 273–282 (2014).
Gardès, E., Laumonier, M., Massuyeau, M. & Gaillard, F. Unravelling partial melt distribution in the oceanic low velocity zone. Earth Planet. Sci. Lett. 540, 116242 (2020).
Gardés, E., Gaillard, F. & Tarits, P. Toward a unified hydrous olivine electrical conductivity law. Geochem. Geophys. Geosystems 15, 4984–5000 (2014).
Yang, X. et al. Effect of water on the electrical conductivity of lower crustal clinopyroxene. J. Geophys. Res. 116, B04208 (2011).
Adam, J., Turner, M., Hauri, E. H. & Turner, S. Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am. Mineral. 101, 876–888 (2016).
Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Inter. 176, 54–68 (2009).
GeoTools (Viridien Group, 2025).

