Wednesday, October 29, 2025
No menu items!
HomeNatureMagnetotelluric evidence for a melt-rich magmatic reservoir beneath Mayotte

Magnetotelluric evidence for a melt-rich magmatic reservoir beneath Mayotte

  • Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bachmann, O. & Bergantz, G. W. Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Rev. Mineral. Geochem. 69, 651–674 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cooper, K. M. & Kent, A. J. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laumonier, M., Gaillard, F., Muir, D., Blundy, J. & Unsworth, M. Giant magmatic water reservoirs at mid-crustal depth inferred from electrical conductivity and the growth of the continental crust. Earth Planet. Sci. Lett. 457, 173–180 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holness, M. B., Stock, M. J. & Geist, D. Magma chambers versus mush zones: constraining the architecture of sub-volcanic plumbing systems from microstructural analysis of crystalline enclaves. Philos. Trans. R. Soc. A 377, 20180006 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weber, G., Caricchi, L., Arce, J. L. & Schmitt, A. K. Determining the current size and state of subvolcanic magma reservoirs. Nat. Commun. 11, 5477 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andújar, J. et al. Experimental evidence for the shallow production of phonolitic magmas at Mayotte. C. R. Geosci. 354, 225–256 (2023).

    Article 

    Google Scholar
     

  • Berthod, C. et al. The 2018-ongoing Mayotte submarine eruption: magma migration imaged by petrological monitoring. Earth Planet. Sci. Lett. 571, 117085 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Berthod, C. et al. Mantle xenolith-bearing phonolites and basanites feed the active volcanic ridge of Mayotte (Comoros archipelago, SW Indian Ocean). Contrib. Mineral. Petrol. 176, 75 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feuillet, N. et al. Birth of a large volcanic edifice offshore Mayotte via lithosphere-scale dyke intrusion. Nat. Geosci. 14, 787–795 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • White, S. M., Crisp, J. A. & Spera, F. J. Long‐term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosystems 7, 2005GC001002 (2006).

    Article 

    Google Scholar
     

  • Paulatto, M. et al. Advances in seismic imaging of magma and crystal mush. Front. Earth Sci. 10, 970131 (2022).

    Article 

    Google Scholar
     

  • Chave, A. D. & Jones, A. G. The Magnetotelluric Method: Theory and Practice (Cambridge Univ. Press, 2012).

  • Yoshino, T. in Magmas Under Pressure (eds Kono, Y. & Sanloup, C.) 281–319 (Elsevier, 2018).

  • Johnson, N. E. et al. Magma imaged magnetotellurically beneath an active and an inactive magmatic segment in Afar, Ethiopia. Geol. Soc. Lond. Spec. Publ. 420, 105–125 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hill, G. J. et al. Trans-crustal structural control of CO2-rich extensional magmatic systems revealed at Mount Erebus Antarctica. Nat. Commun. 13, 2989 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comeau, M. J., Unsworth, M. J. & Cordell, D. New constraints on the magma distribution and composition beneath Volcán Uturuncu and the southern Bolivian Altiplano from magnetotelluric data. Geosphere 12, 1391–1421 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ichiki, M. et al. Magma reservoir beneath Azumayama Volcano, NE Japan, as inferred from a three-dimensional electrical resistivity model explored by means of magnetotelluric method. Earth Planets Space 73, 150 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Isaia, R. et al. 3D magnetotelluric imaging of a transcrustal magma system beneath the Campi Flegrei caldera, southern Italy. Commun. Earth Environ. 6, 213 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Key, K., Constable, S., Liu, L. & Pommier, A. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pommier, A. & Le-Trong, E. “SIGMELTS”: a web portal for electrical conductivity calculations in geosciences. Comput. Geosci. 37, 1450–1459 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Thinon, I. et al. Volcanism and tectonics unveiled in the Comoros archipelago between Africa and Madagascar. C. R. Geosci. 354, 7–34 (2022).

    Article 

    Google Scholar
     

  • Masquelet, C. et al. Intra-oceanic emplacement of the Comoros archipelago through inherited fracture zones. Tectonophysics 882, 230348 (2024).

    Article 

    Google Scholar
     

  • Rusquet, A. et al. Phases of magmatism and tectonics along the Madagascar–Comoros volcanic chain, and synchronous changes in the kinematics of the Lwandle and Somalia plates. J. Geophys. Res. Solid Earth 130, e2024JB029488 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Lacombe, T. et al. Late Quaternary explosive phonolitic volcanism of Petite-Terre (Mayotte, Western Indian Ocean). Bull. Volcanol. 86, 11 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nehlig, P. et al. Notice explicative, carte géologique France (1/30 000), feuille Mayotte (1179). Carte géologique par Lacquement, F., Nehlig, P. & Bernard, J. (BRGM Éditions, Service géologique national, Orléans, 2013).

  • Pelleter, A.-A. et al. Melilite-bearing lavas in Mayotte (France): an insight into the mantle source below the Comores. Lithos 208, 281–297 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Lemoine, A. et al. The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption. Geophys. J. Int. 223, 22–44 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Michon, L., Famin, V. & Quidelleur, X. Evolution of the East African Rift System from trap-scale to plate-scale rifting. Earth Sci. Rev. 231, 104089 (2022).

    Article 

    Google Scholar
     

  • Class, C., Goldstein, S. L., Stute, M., Kurz, M. D. & Schlosser, P. Grand Comore Island: a well-constrained “low 3He/4He” mantle plume. Earth Planet. Sci. Lett. 233, 391–409 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chauvel, C. et al. Fani Maoré, a new “young HIMU” volcano with extreme geochemistry. Earth Planet. Sci. Lett. 626, 118529 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Famin, V., Michon, L. & Bourhane, A. The Comoros archipelago: a right-lateral transform boundary between the Somalia and Lwandle plates. Tectonophysics 789, 228539 (2020).

    Article 

    Google Scholar
     

  • Mercury, N. et al. Onset of a submarine eruption east of Mayotte, Comoros archipelago: the first ten months seismicity of the seismo-volcanic sequence (2018–2019). C. R. Geosci. 354, 105–136 (2022).

    Article 

    Google Scholar
     

  • Lavayssière, A. et al. A new 1D velocity model and absolute locations image the Mayotte seismo-volcanic region. J. Volcanol. Geotherm. Res. 421, 107440 (2022).

    Article 

    Google Scholar
     

  • REVOSIMA Bulletin de Mai 2023 de l’activité sismo-volcanique à Mayotte (IPGP, Université de Paris, OVPF, BRGM, Ifremer, CNRS, 2023); https://www.ipgp.fr/wp-content/uploads/2023/06/Revosima_bull_20230606.pdf.

  • Cesca, S. et al. Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation. Nat. Geosci. 13, 87–93 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berthod, C. et al. Temporal magmatic evolution of the Fani Maoré submarine eruption 50 km east of Mayotte revealed by in situ sampling and petrological monitoring. C. R. Geosci. 354, 195–223 (2022).

  • Jacques, E. et al. Ring faulting and piston collapse in the mantle sustained the largest submarine eruption ever documented. Earth Planet. Sci. Lett. 647, 119026 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dofal, A., Fontaine, F. R., Michon, L., Barruol, G. & Tkalčić, H. Nature of the crust beneath the islands of the Mozambique Channel: constraints from receiver functions. J. Afr. Earth. Sci. 184, 104379 (2021).

    Article 

    Google Scholar
     

  • Foix, O. et al. Offshore Mayotte volcanic plumbing revealed by local passive tomography. J. Volcanol. Geotherm. Res. 420, 107395 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sifré, D. et al. Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittal, T., Jordan, J. S., Retailleau, L., Beauducel, F. & Peltier, A. Mayotte 2018 eruption likely sourced from a magmatic mush. Earth Planet. Sci. Lett. 590, 117566 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jorry, S. MAYOBS2 French Oceanographic Cruise, RV Marion Dufresne SISMER Database (French Oceanographic Fleet, 2019).

  • Darnet, M., Wawrzyniak, P., Tarits, P., Hautot, S. & d’Eu, J.-F. Mapping the geometry of volcanic systems with magnetotelluric soundings: results from a land and marine magnetotelluric survey performed during the 2018–2019 Mayotte seismovolcanic crisis. J. Volcanol. Geotherm. Res. 406, 107046 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wawrzyniak, P. et al. Dataset deposit for Nature paper Magnetotelluric evidence for a melt-rich magmatic reservoir beneath Mayotte. BRGM https://doi.org/10.18144/605e087b-74a7-4c3b-b733-a5e6167bea0a (2025).

  • Chave, A. D. & Thomson, D. J. Bounded influence magnetotelluric response function estimation. Geophys. J. Int. 157, 988–1006 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Smaï, F. & Wawrzyniak, P. Razorback, an open source Python library for robust processing of magnetotelluric data. Front. Earth Sci. 8, 296 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hautot, S. et al. Deep structure of the Baringo Rift Basin (central Kenya) from three‐dimensional magnetotelluric imaging: implications for rift evolution. J. Geophys. Res. Solid Earth 105, 23493–23518 (2000).

    Article 

    Google Scholar
     

  • Hautot, S. et al. 3-D magnetotelluric inversion and model validation with gravity data for the investigation of flood basalts and associated volcanic rifted margins. Geophys. J. Int. 170, 1418–1430 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Miensopust, M. P., Queralt, P., Jones, A. G. & 3D. MT modellers. Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison. Geophys. J. Int. 193, 1216–1238 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ars, J.-M. et al. Joint inversion of gravity and surface wave data constrained by magnetotelluric: application to deep geothermal exploration of crustal fault zone in felsic basement. Geothermics 80, 56–68 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Booker, J. R. The magnetotelluric phase tensor: a critical review. Surv. Geophys. 35, 7–40 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Caricchi, L., Gaillard, F., Mecklenburgh, J. & Le Trong, E. Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet. Sci. Lett. 302, 81–94 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Electrical conductivity of CO2 and H2O‐bearing nephelinitic melt. J. Geophys. Res. Solid Earth 126, e2020JB019569 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iacono-Marziano, G., Morizet, Y., Le Trong, E. & Gaillard, F. New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Di Genova, D. et al. Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem. Geol. 475, 76–86 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jiménez-Mejías, M., Andújar, J., Scaillet, B. & Casillas, R. Experimental determination of H2O and CO2 solubilities of mafic alkaline magmas from Canary Islands. C. R. Geosci. 353, 289–314 (2021).

    Article 

    Google Scholar
     

  • Gaillard, F. & Marziano, G. I. Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition. J. Geophys. Res. Solid Earth 110, 2004JB003282 (2005).

    Article 

    Google Scholar
     

  • Blatter, D., Naif, S., Key, K. & Ray, A. A plume origin for hydrous melt at the lithosphere–asthenosphere boundary. Nature 604, 491–494 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, K. J., Zhu, W., Montési, L. G. & Gaetani, G. A. Experimental quantification of permeability of partially molten mantle rock. Earth Planet. Sci. Lett. 388, 273–282 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gardès, E., Laumonier, M., Massuyeau, M. & Gaillard, F. Unravelling partial melt distribution in the oceanic low velocity zone. Earth Planet. Sci. Lett. 540, 116242 (2020).

    Article 

    Google Scholar
     

  • Gardés, E., Gaillard, F. & Tarits, P. Toward a unified hydrous olivine electrical conductivity law. Geochem. Geophys. Geosystems 15, 4984–5000 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Yang, X. et al. Effect of water on the electrical conductivity of lower crustal clinopyroxene. J. Geophys. Res. 116, B04208 (2011).

    ADS 

    Google Scholar
     

  • Adam, J., Turner, M., Hauri, E. H. & Turner, S. Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am. Mineral. 101, 876–888 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Inter. 176, 54–68 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • GeoTools (Viridien Group, 2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments