Friday, September 26, 2025
No menu items!
HomeNatureLow-overhead transversal fault tolerance for universal quantum computation

Low-overhead transversal fault tolerance for universal quantum computation

  • Dalzell, A. M. et al. Quantum Algorithms: A Survey of Applications and End-to-End Complexities (Cambridge Univ. Press, 2025).

  • Beverland, M. E. et al. Assessing requirements to scale to practical quantum advantage. Preprint at https://arxiv.org/abs/2211.07629 (2022).

  • Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    Article 

    Google Scholar
     

  • Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint at https://arxiv.org/abs/0904.2557 (2010).

  • Gottesman, D. Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14, 1338–1372 (2013).

    MathSciNet 

    Google Scholar
     

  • Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).

  • Bravyi, S. B. & Kitaev, A. Y. D. Quantum codes on a lattice with boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052 (1998).

  • Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).

    Article 

    Google Scholar
     

  • Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cain, M. et al. Correlated decoding of logical algorithms with transversal gates. Phys. Rev. Lett. 133, 240602 (2024).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

    Article 

    Google Scholar
     

  • Hastings, M. B. Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Raussendorf, R. Quantum computation via translation-invariant operations on a chain of qubits. Phys. Rev. A 72, 052301 (2005).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Cohen, L. Z., Kim, I. H., Bartlett, S. D. & Brown, B. J. Low-overhead fault-tolerant quantum computing using long-range connectivity. Sci. Adv. 8, eabn1717 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Q. et al. Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays. Nat. Phys. 20, 1084–1090 (2024).

    Article 

    Google Scholar
     

  • Yamasaki, H. & Koashi, M. Time-efficient constant-space-overhead fault-tolerant quantum computation. Nat. Phys. 20, 247–253 (2024).

    Article 

    Google Scholar
     

  • Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tremblay, M. A., Delfosse, N. & Beverland, M. E. Constant-overhead quantum error correction with thin planar connectivity. Phys. Rev. Lett. 129, 050504 (2022).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Bombín, H. Single-shot fault-tolerant quantum error correction. Phys. Rev. X 5, 031043 (2015).


    Google Scholar
     

  • Campbell, E. T. A theory of single-shot error correction for adversarial noise. Quantum Sci. Technol. 4, 025006 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Beverland, M. E., Kubica, A. & Svore, K. M. Cost of universality: a comparative study of the overhead of state distillation and code switching with color codes. PRX Quantum 2, 020341 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Delfosse, N. & Paetznick, A. Spacetime codes of Clifford circuits. Preprint at https://arxiv.org/abs/2304.05943 (2023).

  • Gidney, C. Stim: a fast stabilizer circuit simulator. Quantum 5, 497 (2021).

    Article 

    Google Scholar
     

  • Gottesman, D. Opportunities and challenges in fault-tolerant quantum computation. Preprint at https://arxiv.org/abs/2210.15844 (2022).

  • Cai, Z., Siegel, A. & Benjamin, S. Looped pipelines enabling effective 3D qubit lattices in a strictly 2D device. PRX Quantum 4, 020345 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Duckering, C., Baker, J. M., Schuster, D. I. & Chong, F. T. Virtualized logical qubits: a 2.5D architecture for error-corrected quantum computing. In Proc. Annual International Symposium on Microarchitecture (MICRO) 173–185 (IEEE, 2020).

  • Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675–680 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code. Preprint at https://arxiv.org/abs/2208.01863 (2022).

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jochym-O’Connor, T., Kubica, A. & Yoder, T. J. Disjointness of stabilizer codes and limitations on fault-tolerant logical gates. Phys. Rev. X 8, 021047 (2018).


    Google Scholar
     

  • Li, Y. A magic state’s fidelity can be superior to the operations that created it. New J. Phys. 17, 023037 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Haah, J. What is your logical qubit. In Proc. Simons Institute Workshop on Advances in Quantum Coding Theory (Simons Institute for the Theory of Computing, 2024).

  • Cain, M. et al. Fast correlated decoding of transversal logical algorithms. Preprint at https://arxiv.org/abs/2505.13587 (2025).

  • Serra-Peralta, M., Shaw, M. H. & Terhal, B. M. Decoding across transversal Clifford gates in the surface code. Preprint at https://arxiv.org/abs/2505.13599 (2025).

  • Kovalev, A. A. & Pryadko, L. P. Fault tolerance of quantum low-density parity check codes with sublinear distance scaling. Phys. Rev. A 87, 020304 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Higgott, O., Bohdanowicz, T. C., Kubica, A., Flammia, S. T. & Campbell, E. T. Improved decoding of circuit noise and fragile boundaries of tailored surface codes. Phys. Rev. X 13, 031007 (2023).


    Google Scholar
     

  • Gurobi Optimization. Gurobi Optimizer Reference Manual (Gurobi Optimization, 2024).

  • Kim, I. H. et al. Fault-tolerant resource estimate for quantum chemical simulations: case study on Li-ion battery electrolyte molecules. Phys. Rev. Res. 4, 023019 (2022).

    Article 

    Google Scholar
     

  • Fowler, A. G. & Gidney, C. Low overhead quantum computation using lattice surgery. Preprint at https://arxiv.org/abs/1808.06709 (2018).

  • Turner, M. L., Campbell, E. T., Crawford, O., Gillespie, N. I. & Camps, J. Scalable decoding protocols for fast transversal logic in the surface code. Preprint at https://arxiv.org/abs/2505.23567 (2025).

  • Fowler, A. G. Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time. Quantum Inf. Comput.15, 145–158 (2015).

    MathSciNet 

    Google Scholar
     

  • Duclos-Cianci, G. & Poulin, D. Fast decoders for topological quantum codes. Phys. Rev. Lett. 104, 050504 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tillich, J. P. & Zemor, G. Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inf. Theory 60, 1193–1202 (2014).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Panteleev, P. & Kalachev, G. Asymptotically good quantum and locally testable classical LDPC codes. In Proc. Annual ACM Symposium on Theory of Computing 375–388 (IEEE, 2022).

  • Fawzi, O., Grospellier, A. & Leverrier, A. Constant overhead quantum fault-tolerance with quantum expander codes. In Proc. 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) 743–754 (IEEE, 2018).

  • Gu, S. et al. Single-shot decoding of good quantum LDPC codes. Commun. Math. Phys. 405, 85 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bombín, H. Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17, 083002 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kubica, A., Yoshida, B. & Pastawski, F. Unfolding the color code. New J. Phys. 17, 083026 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bombin, H. Transversal gates and error propagation in 3D topological codes. Preprint at https://arxiv.org/abs/1810.09575 (2018).

  • Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207–1282 (1999).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  • Pattison, C. A., Krishna, A. & Preskill, J. Hierarchical memories: simulating quantum LDPC codes with local gates. Quantum 9, 1728 (2025).

    Article 

    Google Scholar
     

  • Bravyi, S., Gosset, D., König, R. & Tomamichel, M. Quantum advantage with noisy shallow circuits. Nat. Phys. 16, 1040–1045 (2020).

    Article 

    Google Scholar
     

  • Moussa, J. E. Transversal Clifford gates on folded surface codes. Phys. Rev. A 94, 042316 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Breuckmann, N. P. & Burton, S. Fold-transversal Clifford gates for quantum codes. Quantum 8, 1372 (2024).

    Article 

    Google Scholar
     

  • Quintavalle, A. O., Webster, P. & Vasmer, M. Partitioning qubits in hypergraph product codes to implement logical gates. Quantum 7, 1153 (2023).

    Article 

    Google Scholar
     

  • Bombín, H. et al. Modular decoding: parallelizable real-time decoding for quantum computers. Preprint at https://arxiv.org/abs/2303.04846 (2023).

  • Higgott, O. & Breuckmann, N. P. Improved single-shot decoding of higher-dimensional hypergraph-product codes. PRX Quantum 4, 020332 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Landahl, A. J., Anderson, J. T. & Rice, P. R. Fault-tolerant quantum computing with color codes. Preprint at https://arxiv.org/abs/1108.5738 (2011).

  • Bravyi, S. & Cross, A. Doubled color codes. Preprint at https://arxiv.org/abs/1509.03239 (2015).

  • Bacon, D., Flammia, S. T., Harrow, A. W. & Shi, J. Sparse quantum codes from quantum circuits. In Proc. Forty-Seventh Annual ACM Symposium on Theory of Computing 327–334 (ACM, 2014).

  • Aliferis, P., Gottesman, D. & Preskill, J. Accuracy threshold for postselected quantum computation. Quantum Inf. Comput. 8, 181–244 (2008).

    MathSciNet 

    Google Scholar
     

  • Lao, L. & Criger, B. Magic state injection on the rotated surface code. In Proc. 19th ACM International Conference on Computing Frontiers 113–120 (ACM, 2022).

  • Gidney, C. Cleaner magic states with hook injection. Preprint at https://arxiv.org/abs/2302.12292 (2023).

  • Vasmer, M. & Browne, D. E. Three-dimensional surface codes: transversal gates and fault-tolerant architectures. Phys. Rev. A 100, 012312 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Brown, B. J. A fault-tolerant non-Clifford gate for the surface code in two dimensions. Sci. Adv. 6, 4929–4951 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, G., Sikander, S., Portnoy, E., Cross, A. W. & Brown, B. J. Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries. Preprint at https://arxiv.org/abs/2310.16982 (2023).

  • Bravyi, S., Smith, G. & Smolin, J. A. Trading classical and quantum computational resources. Phys. Rev. X 6, 021043 (2016).


    Google Scholar
     

  • Yoganathan, M., Jozsa, R. & Strelchuk, S. Quantum advantage of unitary Clifford circuits with magic state inputs. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20180427 (2018).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Gidney, C. Halving the cost of quantum addition. Quantum 2, 74 (2018).

    Article 

    Google Scholar
     

  • Cuccaro, S. A., Draper, T. G., Kutin, S. A. & Moulton, D. P. A new quantum ripple-carry addition circuit. Preprint at https://arxiv.org/abs/quant-ph/0410184 (2004).

  • Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear T complexity. Phys. Rev. X 8, 041015 (2018).


    Google Scholar
     

  • Fowler, A. G. Time-optimal quantum computation. Preprint at https://arxiv.org/abs/1210.4626 (2012).

  • Litinski, D. & Nickerson, N. Active volume: an architecture for efficient fault-tolerant quantum computers with limited non-local connections. Preprint at https://arxiv.org/abs/2211.15465 (2022).

  • Knill, E. Quantum computing with very noisy devices. Nature 434, 39–44 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Gidney, C. & Fowler, A. G. Flexible layout of surface code computations using AutoCCZ states. Preprint at https://arxiv.org/abs/1905.08916 (2019).

  • Bravyi, S. & Haah, J. Magic-state distillation with low overhead. Phys. Rev. A 86, 052329 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kubica, A. & Vasmer, M. Single-shot quantum error correction with the three-dimensional subsystem toric code. Nat. Commun. 13, 6272 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wootton, J. R. & Loss, D. High threshold error correction for the surface code. Phys. Rev. Lett. 109, 160503 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fowler, A. G. Optimal complexity correction of correlated errors in the surface code. Preprint at https://arxiv.org/abs/1310.0863 (2013).

  • Delfosse, N., Londe, V. & Beverland, M. E. Toward a union-find decoder for quantum LDPC codes. IEEE Trans. Inf. Theory 68, 3187–3199 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Panteleev, P. & Kalachev, G. Degenerate quantum LDPC codes with good finite length performance. Quantum 5, 585 (2019).

    Article 

    Google Scholar
     

  • Wu, Y., Zhong, L. & Puri, S. Hypergraph minimum-weight parity factor decoder for QEC. In Proc. 2024 APS March Meeting (American Physical Society, 2024).

  • Bombín, H. Gauge color codes: optimal transversal gates and gauge fixing in topological stabilizer codes. New J. Phys. 17, 083002 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Liyanage, N., Wu, Y., Deters, A. & Zhong, L. Scalable quantum error correction for surface codes using FPGA. In Proc. 31st IEEE International Symposium on Field-Programmable Custom Computing Machine (FCCM) 217 (IEEE, 2023).

  • Richardson, T. & Urbanke, R. Modern Coding Theory (Cambridge Univ. Press, 2008).

  • Wu, Y. & Zhong, L. Fusion Blossom: fast MWPM decoders for QEC. In Proc. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 928–938 (IEEE, 2023).

  • Grospellier, A. Constant Time Decoding of Quantum Expander Codes and Application to Fault-Tolerant Quantum Computation. PhD thesis, Sorbonne Univ. (2019).

  • Tan, X., Zhang, F., Chao, R., Shi, Y. & Chen, J. Scalable surface-code decoders with parallelization in time. PRX Quantum 4, 040344 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Skoric, L., Browne, D. E., Barnes, K. M., Gillespie, N. I. & Campbell, E. T. Parallel window decoding enables scalable fault tolerant quantum computation. Nat. Commun. 14, 7040 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pino, J. M. et al. Demonstration of the trapped-ion quantum CCD computer architecture. Nature 592, 209–213 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bartolucci, S. et al. Switch networks for photonic fusion-based quantum computing. Preprint at https://arxiv.org/abs/2109.13760 (2021).

  • Zhou, H. et al. Data for “Low-Overhead Transversal Fault Tolerance for Universal Quantum Computation”. Zenodo https://doi.org/10.5281/zenodo.16552626 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments