Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: a net production model for global ocean phytoplankton. Global Biogeochem. Cycles 30, 1756â1777 (2016).
Carr, M. E. et al. A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. II: Top. Stud. Oceanogr. 53, 741â770 (2006).
Westberry, T. K., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbonâbased primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles 22, e2007GB003078 (2008).
Nowicki, M., DeVries, T. & Siegel, D. A. Quantifying the carbon export and sequestration pathways of the oceanâs biological carbon pump. Global Biogeochem. Cycles 36, e2021GB007083 (2022).
Schlitzer, R. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. Geophys. Monogr. Am. Geophys. Union 114, 107â124 (2000).
Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56â60 (2004).
Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139â1142 (2018).
State of World Fisheries and Aquaculture: 2012 (FAO, 2012).
Costello, C. et al. The future of food from the sea. Nature 588, 95â100 (2020).
Blanchard, J. L. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat. Ecol. Evol. 1, 1240â1249 (2017).
Fine, R. A., Maillet, K. A., Sullivan, K. F. & Willey, D. Circulation and ventilation flux of the Pacific Ocean. J. Geophys. Res. Oceans 106, 22159â22178 (2001).
Aumont, O., Orr, J. C., Monfray, P., Madec, G. & MaierâReimer, E. Nutrient trapping in the equatorial Pacific: the ocean circulation solution. Global Biogeochem. Cycles 13, 351â369 (1999).
Toyama, K. et al. Large reemergence of anthropogenic carbon into the oceanâs surface mixed layer sustained by the oceanâs overturning circulation. J. Clim. 30, 8615â8631 (2017).
Primeau, F. W., Holzer, M. & DeVries, T. Southern Ocean nutrient trapping and the efficiency of the biological pump. J. Geophys. Res. Oceans 118, 2547â2564 (2013).
Herraiz-Borreguero, L. & Rintoul, S. R. Subantarctic mode water: distribution and circulation. Ocean Dyn. 61, 103â126 (2011).
Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
Danabasoglu, G. et al. The community Earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).
Sellar, A. A. et al. UKESM1: description and evaluation of the UK Earth system model. J. Adv. Model. Earth Syst. 11, 4513â4558 (2019).
Ziehn, T. et al. The Australian earth system model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193â214 (2020).
Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197â2244 (2020).
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571â3605 (2020).
McCreary, J. P. & Lu, P. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J. Phys. Oceanogr. 24, 466â497 (1994).
Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) â an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297â323 (2016).
Lauvset, S. K. et al. A new global interior ocean mapped climatology: the 1° x 1° GLODAP version 2. Earth Syst. Sci. Data 8, 325â340 (2016).
DeVries, T. The oceanic anthropogenic CO2 sink: storage, airâsea fluxes, and transports over the industrial era. Global Biogeochem. Cycles 28, 631â647 (2014).
Redfield, A. C. The influence of organisms on the composition of seawater. The Sea 2, 26â77 (1963).
Aumont, O., Ethe, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465â2513 (2015).
Talley, L. D. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr. 33, 530â560 (2003).
Sen Gupta, A. et al. Future changes to the Indonesian throughflow and Pacific circulation: the differing role of wind and deep circulation changes. Geophys. Res. Lett. 43, 1669â1678 (2016).
Feng, M., Zhang, X. B., Sloyan, B. & Chamberlain, M. Contribution of the deep ocean to the centennial changes of the Indonesian throughflow. Geophys. Res. Lett. 44, 2859â2867 (2017).
Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J. & Slater, R. D. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the meridional overturning circulation. Biogeosciences 7, 3549â3568 (2010).
Séférian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95â119 (2020).
Bopp, L. et al. Diazotrophy as a key driver of the response of marine net primary productivity to climate change. Biogeosciences 19, 4267â4285 (2022).
Long, M. C. et al. Simulations with the Marine Biogeochemistry Library (MARBL). J. Adv. Model. Earth Syst. 13, e2021MS002647 (2021).
Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Global Biogeochem. Cycles 32, 858â876 (2018).
Cooley, S. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 3 (Cambridge Univ. Press, 2022).
Carter, B. R. et al. Preformed properties for marine organic matter and carbonate mineral cycling quantification. Global Biogeochem. Cycles 35, e2020GB006623 (2021).
Broecker, W. S. âNOâ, a conservative water-mass tracer. Earth Planet. Sci. Lett. 23, 100â107 (1974).
Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813â839 (2005).
Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles 8, 65â80 (1994).
Takahashi, T., Broecker, W. S. & Langer, S. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. Oceans 90, 6907â6924 (1985).
Paulmier, A., Kriest, I. & Oschlies, A. Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models. Biogeosciences 6, 923â935 (2009).
Aumont, O. & Rodgers, K. Low-latitude mesopelagic nutrient recycling controls on productivity and export. Zenodo https://doi.org/10.5281/zenodo.10554639 (2024).
Rodgers, K. & Aumont, O. Analysis files for âLow-latitude mesopelagic nutrient recycling controls productivity and exportâ. Zenodo https://doi.org/10.5281/zenodo.11617863 (2024).