Friday, March 21, 2025
No menu items!
HomeNatureLong-term studies provide unique insights into evolution

Long-term studies provide unique insights into evolution

  • Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bozdag, G. O. et al. De novo evolution of macroscopic multicellularity. Nature 617, 747–754 (2023).

  • Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kassen, R. Experimental Evolution and the Nature of Biodiversity (Oxford Univ. Press, 2024).

  • Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, 1986).

  • Grant, P. R. & Grant, B. R. 40 Years of Evolution: Darwin’s Finches on Daphne Major Island (Princeton Univ. Press, 2014). A seminal book summarizing compelling evidence for rapid evolution by natural selection, based on the meticulous long-term field studies by the authors, spanning four decades of morphological changes in Galápagos finches in response to environmental pressures.

  • Losos, J. B. Improbable Destinies: Fate, Chance, and the Future of Evolution (Penguin, 2018).

  • Exciting times for evolutionary biology. Nat. Ecol. Evol. 8, 593–594 (2024).

  • Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018). This long-term field study documents the rapid formation of a new species in the wild through hybridization between two distinct species of Darwin’s finches in the Galápagos, demonstrating that hybridization can be a powerful mechanism driving rapid evolutionary diversification.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenski, R. E. Revisiting the design of the long-term evolution experiment with Escherichia coli. J. Mol. Evol. 91, 241–253 (2023). This paper offers valuable insights into the design and implementation of the LTEE, highlighting the key features that have made this study so successful for studying evolutionary dynamics, potential improvements to experimental design and future directions for this ongoing experiment.

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008). This article demonstrates the crucial role of historical contingency in the evolution of novel traits, using the LTEE with E. coli to show that the emergence of a key innovation was dependent on the specific sequence of previous mutations, highlighting the importance of chance events and the order of mutations in shaping evolutionary outcomes.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Silvertown, J. et al. The Park Grass Experiment 1856–2006: its contribution to ecology. J. Ecol. 94, 801–814 (2006).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Snaydon, R. & Davies, M. Rapid population differentiation in a mosaic environment. Heredity 37, 9–25 (1976).

    Article 
    MATH 

    Google Scholar
     

  • Siepielski, A. M. et al. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc. R. Soc. B 286, 20191332 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Travisano, M. in Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments (eds Garland, T. & Rose, M. R.) 111–133 (2009).

  • Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010). This paper emphasizes the critical importance of long-term, individual-based studies in understanding the complex interactions between ecological and evolutionary processes, as well as the role of individual variation in shaping population dynamics and evolutionary trajectories.

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Sheldon, B. C., Kruuk, L. E. & Alberts, S. C. The expanding value of long-term studies of individuals in the wild. Nat. Ecol. Evol. 6, 1799–1801 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Coulson, T. et al. Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292, 1528–1531 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464–467 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moose, S. P., Dudley, J. W. & Rocheford, T. R. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9, 358–364 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reznick, D. N. & Travis, J. Experimental studies of evolution and eco-evo dynamics in guppies (Poecilia reticulata). Annu. Rev. Ecol. Evol. Syst. 50, 335–354 (2019). This article summarizes decades of field experiments of Trinidadian guppies investigating the complex interplay between ecological and evolutionary processes, focusing on how predation, resource availability and other environmental factors can drive adaptive changes in life history traits, morphology and behaviour.

    Article 
    MATH 

    Google Scholar
     

  • Reznick, D. N., Ghalambor, C. K. & Crooks, K. Experimental studies of evolution in guppies: a model for understanding the evolutionary consequences of predator removal in natural communities. Mol. Ecol. 17, 97–107 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Heckley, A. M., Pearce, A. E., Gotanda, K. M., Hendry, A. P. & Oke, K. B. Compiling forty years of guppy research to investigate the factors contributing to (non) parallel evolution. J. Evol. Biol. 35, 1414–1431 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Schoener, T. W., Kolbe, J. J., Leal, M., Losos, J. B. & Spiller, D. A. A multigenerational field experiment on eco-evolutionary dynamics of the influential lizard Anolis sagrei: a mid-term report. Copeia 105, 543–549 (2017). This study provides valuable insights into the interplay between ecological and evolutionary processes by demonstrating rapid adaptive changes in Anolis lizard populations in response to experimentally manipulated environmental conditions, highlighting the importance of long-term field studies in understanding the dynamics of eco-evolutionary feedbacks in real time.

    Article 

    Google Scholar
     

  • Travis, J. et al. in Advances in Ecological Research Vol. 50 (eds MoyaLarano, J. et al.) 1–40 (Elsevier, 2014).

  • Philiptschenko, J. Variabilität Und Variation (Gebrüder Borntraeger, 1927).

  • Rolland, J. et al. Conceptual and empirical bridges between micro-and macroevolution. Nat. Ecol. Evol. 7, 1181–1193 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Herron, M. D., Conlin, P. L. & Ratcliff, W. C. The Evolution of Multicellularity (CRC Press, 2022).

  • Jacobeen, S. et al. Cellular packing, mechanical stress and the evolution of multicellularity. Nat. Phys. 14, 286–290 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D. & Travisano, M. Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6, 6102 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Montrose, K. et al. Proteostatic tuning underpins the evolution of novel multicellular traits. Sci. Adv. 10, eadn2706 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamani-Dahaj, S. A. et al. Spontaneous emergence of multicellular heritability. Genes 14, 1635 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

  • Grant, P. R. & Grant, B. R. How and Why Species Multiply: The Radiation of Darwin’s Finches (Princeton Univ. Press, 2007).

  • Cracraft, J. in Evolution Innovation (ed. Nitecki, M. H.) 21–44 (1990).

  • Miller, A. H. & Stroud, J. T. Novel tests of the key innovation hypothesis: adhesive toepads in arboreal lizards. Syst. Biol. 71, 139–152 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Simpson, G. G. in The Major Features of Evolution (Columbia Univ. Press, 1953).

  • Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. 96, 1–15 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Miller, A. H., Stroud, J. T. & Losos, J. B. The ecology and evolution of key innovations. Trends Ecol. Evol. 38, 122–131 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. B 372, 20160417 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blount, Z. D., Barrick, J. E., Davidson, C. J. & Lenski, R. E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489, 513–518 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hall, B. G. Chromosomal mutation for citrate utilization by Escherichia coli K-12. J. Bacteriol. 151, 269–273 (1982).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Turner, C. B., Blount, Z. D., Mitchell, D. H. & Lenski, R. E. Evolution of a cross-feeding interaction following a key innovation in a long-term evolution experiment with Escherichia coli. Microbiology 169, 001390 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldredge, N. et al. The dynamics of evolutionary stasis. Paleobiology 31, 133–145 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wake, D. B., Roth, G. & Wake, M. H. On the problem of stasis in organismal evolution. J. Theor. Biol. 101, 211–224 (1983).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Estes, S. & Arnold, S. J. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 169, 227–244 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).

    PubMed 
    MATH 

    Google Scholar
     

  • Stroud, J. T., Moore, M., Langerhans, R. B. & Losos, J. B. Fluctuating selection maintains distinct species phenotypes in an ecological community in the wild. Proc. Natl Acad. Sci. USA 120, e2222071120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs, H. L. & Grant, P. R. Oscillating selection on Darwin’s finches. Nature 327, 511–513 (1987).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Eldredge, N. Macroevolution Dynamics (McGraw-Hill, 1989).

  • Svensson, E. & Calsbeek, R. The Adaptive Landscape in Evolutionary Biology (Oxford Univ. Press, 2012).

  • Wadgymar, S. M., Daws, S. C. & Anderson, J. T. Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evol. Lett. 1, 26–39 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grant, P. R. & Grant, B. R. From microcosm to macrocosm: adaptive radiation of Darwin’s finches. Evol. J. Linn. Soc. 3, kzae006 (2024).

  • Burga, A., Ben-David, E., Lemus Vergara, T., Boocock, J. & Kruglyak, L. Fast genetic mapping of complex traits in C. elegans using millions of individuals in bulk. Nat. Commun. 10, 2680 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huxley, J. Evolution: The Modern Synthesis (Allen and Unwin, 1942).

  • Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, 2002).

  • Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, 1982).

  • Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, 1930).

  • Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Haldane, J. B. The Causes of Evolution Vol. 5 (Princeton Univ. Press, 1990).

  • Wadgymar, S. M., DeMarche, M. L., Josephs, E. B., Sheth, S. N. & Anderson, J. T. Local adaptation: causal agents of selection and adaptive trait divergence. Annu. Rev. Ecol. Evol. Syst. 53, 87–111 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crawley, M. et al. Determinants of species richness in the Park Grass Experiment. Am. Nat. 165, 179–192 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Snaydon, R. Rapid population differentiation in a mosaic environment. I. The response of Anthoxanthum odoratum populations to soils. Evolution 24, 257–269 (1970).

  • Clausen, J., Keck, D. D. & Hiesey, W. M. Regional differentiation in plant species. Am. Nat. 75, 231–250 (1941).

    Article 
    MATH 

    Google Scholar
     

  • Clausen, J. & Hiesey, W. M. Experimental Studies on the Nature of Species. IV. Genetic Structure of Ecological Races (Carnegie Institute, 1958).

  • Couce, A. et al. Changing fitness effects of mutations through long-term bacterial evolution. Science 383, eadd1417 (2024). This article provides a groundbreaking demonstration of how the fitness effects of mutations can change over the course of long-term evolution, using the LTEE with E. coli to show that mutations that were initially beneficial can become neutral or even deleterious as the genetic background evolves through time.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenski, R. E. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 11, 2181–2194 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Couce, A. & Tenaillon, O. A. The rule of declining adaptability in microbial evolution experiments. Front. Genet. 6, 128797 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. & Marx, C. J. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burke, M. K. et al. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature 467, 587–590 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bonnet, T. et al. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 376, 1012–1016 (2022). This paper compiles long-term datasets from evolutionary field studies to assess rapid adaptive evolution in a wide range of wild animal populations, highlighting the importance of considering contemporary evolutionary changes in conservation and management strategies.

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kruuk, L. E. et al. Antler size in red deer: heritability and selection but no evolution. Evolution 56, 1683–1695 (2002).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kruuk, L. E., Merilä, J. & Sheldon, B. C. Phenotypic selection on a heritable size trait revisited. Am. Nat. 158, 557–571 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Milner, J. M., Albon, S. D., Illius, A. W., Pemberton, J. M. & Clutton-Brock, T. H. Repeated selection of morphometric traits in the Soay sheep on St Kilda. J. Anim. Ecol. 68, 472–488 (1999).

    Article 

    Google Scholar
     

  • Larsson, K., Van der Jeugd, H. P., Van der Veen, I. T. & Forslund, P. Body size declines despite positive directional selection on heritable size traits in a barnacle goose population. Evolution 52, 1169–1184 (1998).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Merilä, J., Kruuk, L. & Sheldon, B. Cryptic evolution in a wild bird population. Nature 412, 76–79 (2001).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Stroud, J. T. et al. Observing character displacement from process to pattern in a novel vertebrate community. Nat. Commun. 15, 9862 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gauzere, J. et al. Maternal effects do not resolve the paradox of stasis in birth weight in a wild red deer populaton. Evolution 76, 2605–2617 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kruuk, L. E., Clutton-Brock, T. & Pemberton, J. M. in Quantitative Genetics in the Wild Vol. 10 (eds Charmantier, A. et al.) 160–176 (Oxford Univ. Press, 2014).

  • Pemberton, J. M. Evolution of quantitative traits in the wild: mind the ecology. Phil. Trans. R. Soc. B 365, 2431–2438 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Conner, J. K. Quantitative genetic approaches to evolutionary constraint: how useful? Evolution 66, 3313–3320 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sheldon, B. C., Kruuk, L. E. B. & Merila, J. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57, 406–420 (2003).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brookfield, J. F. Why are estimates of the strength and direction of natural selection from wild populations not congruent with observed rates of phenotypic change? BioEssays 38, 927–934 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Glądalski, M. et al. Extreme temperature drop alters hatching delay, reproductive success, and physiological condition in great tits. Int. J. Biometeorol. 64, 623–629 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Benton, T. G., Grant, A. & Clutton-Brock, T. H. Does environmental stochasticity matter? Analysis of red deer life-histories on Rum. Evol. Ecol. 9, 559–574 (1995).

    Article 
    MATH 

    Google Scholar
     

  • Pemberton, J. M., Kruuk, L. E. & Clutton-Brock, T. The unusual value of long-term studies of individuals: the example of the Isle of Rum red deer project. Annu. Rev. Ecol. Evol. Syst. 53, 327–351 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–64 (1956).

    Article 
    MATH 

    Google Scholar
     

  • Grant, P. R. & Grant, B. R. The founding of a new population of Darwin’s finches. Evolution 49, 229–240 (1995).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science 313, 224–226 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Boag, P. T. The heritability of external morphology in Darwin’s ground finches (Geospiza) on Isla Daphne Major, Galapagos. Evolution 37, 877–894 (1983).

  • Lamichhaney, S. et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352, 470–474 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B Biol. Sci. 279, 3843–3852 (2012). This article highlights the importance of both phenotypic plasticity and adaptive evolution in enabling plant populations to respond to contemporary climate change by demonstrating that earlier flowering times in a long-term study of mountain wildflowers is driven by a combination of plastic responses and genetic changes.

    Article 

    Google Scholar
     

  • Wadgymar, S. M., Ogilvie, J. E., Inouye, D. W., Weis, A. E. & Anderson, J. T. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment. New Phytol. 218, 517–529 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Anderson, J. T. & Gezon, Z. J. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Glob. Chang. Biol. 21, 1689–1703 (2015).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Primack, R. B., Higuchi, H. & Miller-Rushing, A. J. The impact of climate change on cherry trees and other species in Japan. Biol. Conserv. 142, 1943–1949 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Bates, J. M. et al. Climate change affects bird nesting phenology: comparing contemporary field and historical museum nesting records. J. Anim. Ecol. 92, 263–272 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • De Lisle, S. P., Mäenpää, M. I. & Svensson, E. I. Phenotypic plasticity is aligned with phenological adaptation on both micro- and macroevolutionary timescales. Ecol. Lett. 25, 790–801 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bonnet, T. et al. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol. 17, e3000493 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Martin, R. A., da Silva, C. R., Moore, M. P. & Diamond, S. E. When will a changing climate outpace adaptive evolution? Wiley Interdiscip. Rev. Clim. Change 14, e852 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Simmonds, E. G., Cole, E. F., Sheldon, B. C. & Coulson, T. Phenological asynchrony: a ticking time-bomb for seemingly stable populations? Ecol. Lett. 23, 1766–1775 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ford, E. B. Problems of heredity in the Lepidoptera. Biol. Rev. 12, 461–501 (1937).

    Article 
    MATH 

    Google Scholar
     

  • Kettlewell, H. B. D. Selection experiments on industrial melanism in the Lepidoptera. Heredity 9, 323–342 (1955).

    Article 

    Google Scholar
     

  • Cook, L. M., Grant, B. S., Saccheri, I. J. & Mallet, J. Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biol. Lett. 8, 609–612 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kettlewell, H. B. D. The Evolution of Melanism (Oxford Univ. Press, 1973).

  • Cook, L. M., Dennis, R. L. & Dockery, M. The melanic form of the peppered moth, Biston betularia (Linnaeus, 1758)(Lepidoptera: Geometridae), in Manchester: the end of an era. Entomol. Gaz. 62, 91–99 (2011).


    Google Scholar
     

  • Czorlich, Y., Aykanat, T., Erkinaro, J., Orell, P. & Primmer, C. Rapid evolution in salmon life history induced by direct and indirect effects of fishing. Science 376, 420–423 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heino, M., Díaz, Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 194–203 (2015).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Santangelo, J. S. et al. Global urban environmental change drives adaptation in white clover. Science 375, 1275–1281 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lambert, M. R. & Donihue, C. M. Urban biodiversity management using evolutionary tools. Nat. Ecol. Evol. 4, 903–910 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Reznick, D. & Travis, J. Is evolution predictable? Science 359, 738–739 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Conway Morris, S. Evolution: like any other science it is predictable. Phil. Trans. R. Soc. B 365, 133–145 (2010).

    Article 
    PubMed Central 

    Google Scholar
     

  • Beavan, A. J., Domingo-Sananes, M. R. & McInerney, J. O. Contingency, repeatability, and predictability in the evolution of a prokaryotic pangenome. Proc. Natl Acad. Sci. USA 121, e2304934120 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, S. C. Life’s Solution: Inevitable Humans in a Lonely Universe (Cambridge Univ. Press, 2003).

  • Nosil, P., Flaxman, S. M., Feder, J. L. & Gompert, Z. Increasing our ability to predict contemporary evolution. Nat. Commun. 11, 5592 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gompert, Z., Flaxman, S. M., Feder, J. L., Chevin, L.-M. & Nosil, P. Laplace’s demon in biology: models of evolutionary prediction. Evolution 76, 2794–2810 (2022).

    PubMed 

    Google Scholar
     

  • Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Salverda, M. L., Koomen, J., Koopmanschap, B., Zwart, M. P. & de Visser, J. A. G. Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme. Proc. Natl Acad. Sci. USA 114, 12773–12778 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536, 165–170 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quandt, E. M., Deatherage, D. E., Ellington, A. D., Georgiou, G. & Barrick, J. E. Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli. Proc. Natl Acad. Sci. USA 111, 2217–2222 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018). This article demonstrates that the direction and magnitude of natural selection can be used to predict evolutionary changes in wild populations using long-term field studies of natural selection in Californian Timema stick insects.

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nosil, P. et al. Evolution repeats itself in replicate long-term studies in the wild. Sci. Adv. 10, eadl3149 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thurman, T. J. et al. The difficulty of predicting evolutionary change in response to novel ecological interactions: a field experiment with Anolis lizards. Am. Nat. 201, 537–556 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Chevin, L.-M., Gompert, Z. & Nosil, P. Frequency dependence and the predictability of evolution in a changing environment. Evol. Lett. 6, 21–33 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hendry, A. P. Prediction in ecology and evolution. BioScience 73, 785–799 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Schluter, D. Variable success in linking micro and macroevolution. Evol. J. Linn. Soc. 3, kzae016 (2024).

  • Hendry, A. P. Eco-Evolutionary Dynamics (Princeton Univ. Press, 2017).

  • Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil. Trans. R. Soc. B 364, 1629–1640 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bassar, R. D., Coulson, T., Travis, J. & Reznick, D. N. Towards a more precise—and accurate—view of eco-evolution. Ecol. Lett. 24, 623–625 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hendry, A. P. A critique for eco-evolutionary dynamics. Funct. Ecol. 33, 84–94 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Kokko, H. & López-Sepulcre, A. The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? Ecol. Lett. 10, 773–782 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Jr. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mougi, A. Eco-evolutionary dynamics in microbial interactions. Sci. Rep. 13, 9042 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rodríguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J. 15, 450–460 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kasada, M., Yamamichi, M. & Yoshida, T. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator–prey system. Proc. Natl Acad. Sci. USA 111, 16035–16040 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • De Meester, L. et al. Analysing eco-evolutionary dynamics—the challenging complexity of the real world. Funct. Ecol. 33, 43–59 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Spiller, D. A., Schoener, T. W. & Piovia-Scott, J. in Ecology and Evolution of Plant–Herbivore Interactions on Islands (eds Moreira, X. & Abdala-Roberts, L.) 177–197 (Springer, 2024).

  • Reznick, D. N. et al. Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. Am. Nat. 194, 671–692 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gordon, S. P. et al. Adaptive changes in life history and survival following a new guppy introduction. Am. Nat. 174, 34–45 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Westrick, S. E., Broder, E. D., Reznick, D. N., Ghalambor, C. K. & Angeloni, L. Rapid evolution and behavioral plasticity following introduction to an environment with reduced predation risk. Ethology 125, 232–240 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Lapiedra, O., Schoener, T. W., Leal, M., Losos, J. B. & Kolbe, J. J. Predator-driven natural selection on risk-taking behavior in anole lizards. Science 360, 1017–1020 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Losos, J. B., Schoener, T. W. & Spiller, D. A. Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432, 505–508 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, T. N. et al. Local adaptation in Trinidadian guppies alters stream ecosystem structure at landscape scales despite high environmental variability. Copeia 105, 504–513 (2017).

    Article 

    Google Scholar
     

  • Lapiedra, O. et al. Predator-driven behavioural shifts in a common lizard shape resource-flow from marine to terrestrial ecosystems. Ecol. Lett. 27, e14335 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Schoener, T. W., Spiller, D. A. & Losos, J. B. Predation on a common Anolis lizard: can the food-web effects of a devastating predator be reversed? Ecol. Monogr. 72, 383–407 (2002).

    Article 

    Google Scholar
     

  • Hendry, A. P. Eco-evolutionary dynamics: an experimental demonstration in nature. Curr. Biol. 33, R814–R817 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Waide, R. B. & Kingsland, S. E. The Challenges of Long Term Ecological Research: A Historical Analysis (Springer, 2021).

  • Bono, J. M., Olesnicky, E. C. & Matzkin, L. M. Connecting genotypes, phenotypes and fitness: harnessing the power of CRISPR/Cas9 genome editing. Mol. Ecol. 24, 3810–3822 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, Z. et al. Automated detection of an insect-induced keystone vegetation phenotype using airborne LiDAR. Methods Ecol. Evol. 15, 978–993 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1220–1226 (1983).

    Article 
    MATH 

    Google Scholar
     

  • Svensson, E. I. Phenotypic selection in natural populations: what have we learned in 40 years? Evolution 77, 1493–1504 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Huang, X., Rymbekova, A., Dolgova, O., Lao, O. & Kuhlwilm, M. Harnessing deep learning for population genetic inference. Nat. Rev. Genet. 25, 61–78 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borowiec, M. L. et al. Deep learning as a tool for ecology and evolution. Methods Ecol. Evol. 13, 1640–1660 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Stoddard, M. C., Kilner, R. M. & Town, C. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat. Commun. 5, 4117 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Faria, N. R. et al. The early spread and epidemic ignition of HIV-1 in human populations. Science 346, 56–61 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

  • Bitter, M. C. et al. Continuously fluctuating selection reveals fine granularity of adaptation. Nature 634, 389–396 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments