Thursday, July 17, 2025
No menu items!
HomeNatureLong-range hyperbolic polaritons on a non-hyperbolic crystal surface

Long-range hyperbolic polaritons on a non-hyperbolic crystal surface

  • Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Interface nano-optics with van der Waals polaritons. Nature 597, 187–195 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, D. et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2, 1 (2022).


    Google Scholar
     

  • Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930–930 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Álvarez-Pérez, G. et al. Negative reflection of nanoscale-confined polaritons in a low-loss natural medium. Sci. Adv. 8, eabp8486 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sternbach, A. J. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. Ghost hyperbolic surface polaritons in bulk anisotropic crystals. Nature 596, 362–366 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, B. et al. Molecular polaritons for chemistry, photonics and quantum technologies. Chem. Rev. 124, 2512–2552 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conrads, L. et al. Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In3SbTe2. Nat. Commun. 15, 3472 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Cuervo, J. et al. Unidirectional ray polaritons in twisted asymmetric stacks. Nat. Commun. 15, 9042 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bylinkin, A. et al. On-chip phonon-enhanced IR near-field detection of molecular vibrations. Nat. Commun. 15, 8907 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taboada-Gutiérrez, J. et al. Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nat. Mater. 19, 964–968 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Sun, T. et al. Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics. Nat. Nanotechnol. 19, 758–765 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Passler, N. C. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 602, 595–600 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, C. et al. Hyperbolic-to-hyperbolic transition at exceptional Reststrahlen point in rare-earth oxyorthosilicates. Nat. Commun. 15, 7047 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228–235 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • D’yakonov, M. I. New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988).

    ADS 

    Google Scholar
     

  • Duan, J. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 12, 4325 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2020).

    ADS 

    Google Scholar
     

  • Hu, H. et al. Doping-driven topological polaritons in graphene/α-MoO3 heterostructures. Nat. Nanotechnol. 17, 940–946 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, C. et al. Molding broadband dispersion in twisted trilayer hyperbolic polaritonic surfaces. ACS Nano 16, 13241–13250 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Herzig Sheinfux, H. et al. High-quality nanocavities through multimodal confinement of hyperbolic polaritons in hexagonal boron nitride. Nat. Mater. 23, 499–505 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Tailoring topological transitions of anisotropic polaritons by interface engineering in biaxial crystals. Nano Lett. 22, 4260–4268 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruta, F. L. et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 13, 3719 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wehmeier, L. et al. Tunable phonon polariton hybridization in a van der Waals hetero-bicrystal. Adv. Mater. 36, 2401349 (2024).

    CAS 

    Google Scholar
     

  • Miller, S. et al. Lattice vibrations of yttrium vanadate. Phys. Rev. 168, 964–969 (1968).

    ADS 
    CAS 

    Google Scholar
     

  • Bi, C. Z. et al. Far-infrared optical properties of YVO4 single crystal. Eur. Phys. J. B 51, 167–171 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. et al. Van der Waals metasurfaces molding topological polaritons. Rev. Phys. 13, 100115 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments