Friday, April 25, 2025
No menu items!
HomeNatureLong-distance coherent quantum communications in deployed telecom networks

Long-distance coherent quantum communications in deployed telecom networks

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermans, S. L. N. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J.-L. et al. Creation of memory–memory entanglement in a metropolitan quantum network. Nature 629, 579–585 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 131 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012 (2020).

    Article 

    Google Scholar
     

  • Buhrman, H., Cleve, R., Watrous, J. & de Wolf, R. Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Buhrman, H., Cleve, R., Massar, S. & de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Arrazola, J. M. & Lütkenhaus, N. Quantum fingerprinting with coherent states and a constant mean number of photons. Phys. Rev. A 89, 062305 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article 

    Google Scholar
     

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photon. 15, 137–142 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Denchev, V. S. & Pandurangan, G. Distributed quantum computing. ACM SIGACT News 39, 77–95 (2008).

    Article 

    Google Scholar
     

  • Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben-Or, M. & Hassidim, A. Fast quantum byzantine agreement. In Proc. Thirty-seventh Annual ACM Symposium on Theory of Computing (eds Gabow, H. & Fagin, R.) 481–485 (ACM, 2005).

  • Pfaff, W. et al. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts, G. L. et al. Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X.-B., Yu, Z.-W. & Hu, X.-L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018).

  • Curty, M., Azuma, K. & Lo, H.-K. Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf. 5, 64 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, P., Zhou, H., Wu, W. & Ma, X. Mode-pairing quantum key distribution. Nat. Commun. 13, 3903 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y.-M. et al. Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3, 020315 (2022).

  • Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minder, M. et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon. 13, 334–338 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pittaluga, M. et al. 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photon. 15, 530–535 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, J.-P. et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 299, 1476 (2021).


    Google Scholar
     

  • Chen, J.-P. et al. Quantum key distribution over 658 km fiber with distributed vibration sensing. Phys. Rev. Lett. 128, 180502 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Clivati, C. et al. Coherent phase transfer for real-world twin-field quantum key distribution. Nat. Commun. 13, 157 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett. 130, 210801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L., Lin, J., Jing, Y. & Yuan, Z. Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14, 928 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Twin-field quantum key distribution without phase locking. Phys. Rev. Lett. 130, 250802 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, J., Itzler, M. A., Zbinden, H. & Pan, J.-W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 4, e286–e286 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Humer, G. et al. A simple and robust method for estimating afterpulsing in single photon detectors. J. Lightw. Technol. 33, 3098–3107 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, C., Hu, X.-L., Xu, H., Yu, Z.-W. & Wang, X.-B. Zigzag approach to higher key rate of sending-or-not-sending twin field quantum key distribution with finite-key effects. New J. Phys. 22, 053048 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ye, J. et al. Delivery of high-stability optical and microwave frequency standards over an optical fiber network. J. Opt. Soc. Am. B 20, 1459 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Comandar, L. C. et al. Near perfect mode overlap between independently seeded, gain-switched lasers. Opt. Express 24, 17849–17859 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yuan, Z. L., Dixon, A. R., Dynes, J. F., Sharpe, A. W. & Shields, A. J. Gigahertz quantum key distribution with InGaAs avalanche photodiodes. Appl. Phys. Lett. 92, 201104 (2008).

  • Zhang, J. et al. 2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution. Proc. SPIE 7681, 76810Z (2010).

  • Hu, X.-L., Jiang, C., Yu, Z.-W. & Wang, X.-B. Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters. Phys. Rev. A 100, 062337 (2019).

  • Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Memory-assisted measurement-device-independent quantum key distribution. New J. Phys. 16, 043005 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fröhlich, B. et al. Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, H., Yu, Z.-W., Jiang, C., Hu, X.-L. & Wang, X.-B. Sending-or-not-sending twin-field quantum key distribution: breaking the direct transmission key rate. Phys. Rev. A 101, 042330 (2020).

  • Liu, H. et al. Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126, 250502 (2021).

  • Pirandola, S. End-to-end capacities of a quantum communication network. Commun. Phys. 2, 1023 (2019).

    Article 

    Google Scholar
     

  • Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohde, P. P. & Ralph, T. C. Modelling photo-detectors in quantum optics. J. Mod. Opt. 53, 1589–1603 (2006).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments