Saturday, May 31, 2025
No menu items!
HomeNatureLight-triggered regionally controlled n-doping of organic semiconductors

Light-triggered regionally controlled n-doping of organic semiconductors

  • Talin, A. A. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343, 66–69 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scaccabarozzi, A. D. et al. Doping approaches for organic semiconductors. Chem. Rev. 122, 4420–4492 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pfeiffer, M. et al. Doped organic semiconductors: physics and application in light emitting diodes. Org. Electron. 4, 89–103 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Lüssem, B. et al. Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, M., Tang, Z., Liu, X. & Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 3, 191–200 (2020).

    Article 

    Google Scholar
     

  • Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolesov, V. A. et al. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nat. Mater. 16, 474–481 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C.-Y. et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat. Commun. 11, 3292 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634–638 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiefer, D. et al. Double doping of conjugated polymers with monomer molecular dopants. Nat. Mater. 18, 149–155 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, H. et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67–73 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahlman, M. et al. Interfaces in organic electronics. Nat. Rev. Mater. 4, 627–650 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Selective doping of a single ambipolar organic semiconductor to obtain p- and n-type semiconductors. Matter 5, 2882–2897 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Z.-D. et al. High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci. Adv. 9, eadf3495 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, E. et al. Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nat. Electron. 4, 588–594 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tang, C. G. et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature 539, 536–540 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, J. et al. Ultralow contact resistance in organic transistors via orbital hybridization. Nat. Commun. 14, 324 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawada, T. et al. Correlation between the static and dynamic responses of organic single-crystal field-effect transistors. Nat. Commun. 11, 4839 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ante, F. et al. Contact resistance and megahertz operation of aggressively scaled organic transistors. Small 8, 73–79 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klauk, H. Will we see gigahertz organic transistors? Adv. Electron. Mater. 4, 1700474 (2018).

    Article 

    Google Scholar
     

  • Lüssem, B. et al. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 4, 2775 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhao, W., Ding, J., Zou, Y., Di, C. & Zhu, D. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 49, 7210–7228 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, W. et al. Photocatalytic doping of organic semiconductors. Nature 630, 96–101 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukuzumi, S., Koumitsu, S., Hironaka, K. & Tanaka, T. Energetic comparison between photoinduced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions from NADH model compounds to p-benzoquinone derivatives. J. Am. Chem. Soc. 109, 305–316 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, S. B. et al. Radical anion yield, stability, and electrical conductivity of naphthalene diimide copolymers n-doped with tertiary amines. ACS Appl. Polym. Mater. 2, 1954–1963 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhuo, J. et al. Direct spectroscopic evidence for a photodoping mechanism in polythiophene and poly(bithiophene‐alt‐thienothiophene) organic semiconductor thin films involving oxygen and sorbed moisture. Adv. Mater. 21, 4747–4752 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lin, X. et al. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nat. Mater. 16, 1209–1215 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohapatra, S. K., Marder, S. R. & Barlow, S. Organometallic and organic dimers: moderately air-stable, yet highly reducing, n-dopants. Acc. Chem. Res. 55, 319–332 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobryden, I. et al. Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor. Nat. Commun. 13, 3076 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroon, R., Hofmann, A. I., Yu, L., Lund, A. & Müller, C. Thermally activated in situ doping enables solid-state processing of conducting polymers. Chem. Mater. 31, 2770–2777 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, K. et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, L. et al. Optically switchable organic light-emitting transistors. Nat. Nanotechnol. 14, 347–353 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorova, O. A. et al. Photochemical electrocyclization of the indolinylphenylethenes involving a C–N bond formation. Org. Lett. 5, 4533–4535 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, C. J. et al. Terarylenes as photoactivatable hydride donors. J. Org. Chem. 83, 13700–13706 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Doping: a key enabler for organic transistors. Adv. Mater. 30, 13–19 (2018).

    Article 

    Google Scholar
     

  • Lu, Y. et al. Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n‐doping and high conductivities. Adv. Mater. 33, 2005946 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Shi, K. et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc. 137, 6979–6982 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X. et al. Approaching disorder-tolerant semiconducting polymers. Nat. Commun. 12, 5723 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X.-Y. et al. Density of states engineering of n‐doped conjugated polymers for high charge transport performances. Adv. Mater. 35, 2300634 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, F., Werner, A., Pfeiffer, M., Leo, K. & Liu, X. Leuco crystal violet as a dopant for n-doping of organic thin films of fullerene C60. J. Phys. Chem. B 108, 17076–17082 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wei, P., Oh, J. H., Dong, G. & Bao, Z. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132, 8852–8853 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, K. et al. A novel solution‐processable n‐dopant based on 1,4‐dihydropyridine motif for high electrical conductivity of organic semiconductors. Adv. Electron. Mater. 3, 1700164 (2017).

    Article 

    Google Scholar
     

  • Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Paterson, A. F. et al. Impact of the gate dielectric on contact resistance in high‐mobility organic transistors. Adv. Electron. Mater. 5, 1800723 (2019).

    Article 

    Google Scholar
     

  • Olthof, S. et al. Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Günther, A. A., Sawatzki, M., Formánek, P., Kasemann, D. & Leo, K. Contact doping for vertical organic field-effect transistors. Adv. Funct. Mater. 26, 768–775 (2016).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Planar‐processed polymer transistors. Adv. Mater. 28, 8531–8537 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, G., Kane, M. G. & Mau, S. C. Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors. J. Appl. Phys. 101, 014504 (2007).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments