Talin, A. A. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343, 66–69 (2014).
Scaccabarozzi, A. D. et al. Doping approaches for organic semiconductors. Chem. Rev. 122, 4420–4492 (2022).
Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).
Pfeiffer, M. et al. Doped organic semiconductors: physics and application in light emitting diodes. Org. Electron. 4, 89–103 (2003).
Lüssem, B. et al. Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016).
Zhang, M., Tang, Z., Liu, X. & Van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 3, 191–200 (2020).
Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).
Kolesov, V. A. et al. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nat. Mater. 16, 474–481 (2017).
Yang, C.-Y. et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat. Commun. 11, 3292 (2020).
Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634–638 (2019).
Kiefer, D. et al. Double doping of conjugated polymers with monomer molecular dopants. Nat. Mater. 18, 149–155 (2019).
Guo, H. et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67–73 (2021).
Fahlman, M. et al. Interfaces in organic electronics. Nat. Rev. Mater. 4, 627–650 (2019).
Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).
Chen, Y. et al. Selective doping of a single ambipolar organic semiconductor to obtain p- and n-type semiconductors. Matter 5, 2882–2897 (2022).
Yu, Z.-D. et al. High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci. Adv. 9, eadf3495 (2023).
Guo, E. et al. Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nat. Electron. 4, 588–594 (2021).
Tang, C. G. et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature 539, 536–540 (2016).
Zeng, J. et al. Ultralow contact resistance in organic transistors via orbital hybridization. Nat. Commun. 14, 324 (2023).
Sawada, T. et al. Correlation between the static and dynamic responses of organic single-crystal field-effect transistors. Nat. Commun. 11, 4839 (2020).
Ante, F. et al. Contact resistance and megahertz operation of aggressively scaled organic transistors. Small 8, 73–79 (2012).
Klauk, H. Will we see gigahertz organic transistors? Adv. Electron. Mater. 4, 1700474 (2018).
Lüssem, B. et al. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 4, 2775 (2013).
Zhao, W., Ding, J., Zou, Y., Di, C. & Zhu, D. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 49, 7210–7228 (2020).
Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).
Jin, W. et al. Photocatalytic doping of organic semiconductors. Nature 630, 96–101 (2024).
Fukuzumi, S., Koumitsu, S., Hironaka, K. & Tanaka, T. Energetic comparison between photoinduced electron-transfer reactions from NADH model compounds to organic and inorganic oxidants and hydride-transfer reactions from NADH model compounds to p-benzoquinone derivatives. J. Am. Chem. Soc. 109, 305–316 (1987).
Schmidt, S. B. et al. Radical anion yield, stability, and electrical conductivity of naphthalene diimide copolymers n-doped with tertiary amines. ACS Appl. Polym. Mater. 2, 1954–1963 (2020).
Zhuo, J. et al. Direct spectroscopic evidence for a photodoping mechanism in polythiophene and poly(bithiophene‐alt‐thienothiophene) organic semiconductor thin films involving oxygen and sorbed moisture. Adv. Mater. 21, 4747–4752 (2009).
Lin, X. et al. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nat. Mater. 16, 1209–1215 (2017).
Mohapatra, S. K., Marder, S. R. & Barlow, S. Organometallic and organic dimers: moderately air-stable, yet highly reducing, n-dopants. Acc. Chem. Res. 55, 319–332 (2022).
Dobryden, I. et al. Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor. Nat. Commun. 13, 3076 (2022).
Kroon, R., Hofmann, A. I., Yu, L., Lund, A. & Müller, C. Thermally activated in situ doping enables solid-state processing of conducting polymers. Chem. Mater. 31, 2770–2777 (2019).
Chen, K. et al. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17, 629–637 (2023).
Hou, L. et al. Optically switchable organic light-emitting transistors. Nat. Nanotechnol. 14, 347–353 (2019).
Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).
Fedorova, O. A. et al. Photochemical electrocyclization of the indolinylphenylethenes involving a C–N bond formation. Org. Lett. 5, 4533–4535 (2003).
Martin, C. J. et al. Terarylenes as photoactivatable hydride donors. J. Org. Chem. 83, 13700–13706 (2018).
Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).
Xu, Y. et al. Doping: a key enabler for organic transistors. Adv. Mater. 30, 13–19 (2018).
Lu, Y. et al. Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n‐doping and high conductivities. Adv. Mater. 33, 2005946 (2021).
Shi, K. et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc. 137, 6979–6982 (2015).
Yan, X. et al. Approaching disorder-tolerant semiconducting polymers. Nat. Commun. 12, 5723 (2021).
Wang, X.-Y. et al. Density of states engineering of n‐doped conjugated polymers for high charge transport performances. Adv. Mater. 35, 2300634 (2023).
Li, F., Werner, A., Pfeiffer, M., Leo, K. & Liu, X. Leuco crystal violet as a dopant for n-doping of organic thin films of fullerene C60. J. Phys. Chem. B 108, 17076–17082 (2004).
Wei, P., Oh, J. H., Dong, G. & Bao, Z. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132, 8852–8853 (2010).
Shi, K. et al. A novel solution‐processable n‐dopant based on 1,4‐dihydropyridine motif for high electrical conductivity of organic semiconductors. Adv. Electron. Mater. 3, 1700164 (2017).
Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).
Paterson, A. F. et al. Impact of the gate dielectric on contact resistance in high‐mobility organic transistors. Adv. Electron. Mater. 5, 1800723 (2019).
Olthof, S. et al. Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).
Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).
Günther, A. A., Sawatzki, M., Formánek, P., Kasemann, D. & Leo, K. Contact doping for vertical organic field-effect transistors. Adv. Funct. Mater. 26, 768–775 (2016).
Xu, Y. et al. Planar‐processed polymer transistors. Adv. Mater. 28, 8531–8537 (2016).
Gu, G., Kane, M. G. & Mau, S. C. Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors. J. Appl. Phys. 101, 014504 (2007).