Friday, January 10, 2025
No menu items!
HomeNatureLight-harvesting microelectronic devices for wireless electrosynthesis

Light-harvesting microelectronic devices for wireless electrosynthesis

  • Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev. 23, 1213–1242 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wills, A. G. et al. High-throughput electrochemistry: state of the art, challenges, and perspective. Org. Process Res. Dev. 25, 2587–2600 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Gütz, C., Klöckner, B. & Waldvogel, S. R. Electrochemical screening for electroorganic synthesis. Org. Process Res. Dev. 20, 26–32 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Rein, J., Lin, S., Kalyani, D. & Lehnherr, D. in The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) Vol. 1419 (eds Emmert, M. H., Jouffroy, M. & Leitch, D. C.) 167–187 (American Chemical Society, 2022).

  • Chen, H. & Mo, Y. Accelerated electrosynthesis development enabled by high-throughput experimentation. Synthesis 55, 2817–2832 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Graaf, M. D. & Moeller, K. D. Introduction to microelectrode arrays, the site-selective functionalization of electrode surfaces, and the real-time detection of binding events. Langmuir 31, 7697–7706 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Little, R. D. & Moeller, K. D. Introduction: electrochemistry: technology, synthesis, energy, and materials. Chem. Rev. 118, 4483–4484 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kolbe, H. Zersetzung der Valeriansäure durch den elektrischen Strom. Ann. Chem. Pharm. 64, 339–341 (1848).

    Article 
    MATH 

    Google Scholar
     

  • Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemistry: calling all engineers. Angew. Chem. Int. Ed. 57, 4149–4155 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hendrick, C. E. et al. Direct-to-biology accelerates PROTAC synthesis and the evaluation of linker effects on permeability and degradation. ACS Med. Chem. Lett. 13, 1182–1190 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stevens, R. et al. Integrated direct-to-biology platform for the nanoscale synthesis and biological evaluation of PROTACs. J. Med. Chem. 66, 15437–15452 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Siu, T., Li, W. & Yudin, A. K. Parallel electrosynthesis of α-alkoxycarbamates, α-alkoxyamides, and α-alkoxysulfonamides using the spatially addressable electrolysis platform (SAEP). J. Comb. Chem. 2, 545–549 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palkowitz, M. D. et al. Overcoming limitations in decarboxylative arylation via Ag–Ni electrocatalysis. J. Am. Chem. Soc. 144, 17709–17720 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rein, J. et al. Unlocking the potential of high-throughput experimentation for electrochemistry with a standardized microscale reactor. ACS Cent. Sci. 7, 1347–1355 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gerroll, B. H. R., Kulesa, K. M., Ault, C. A. & Baker, L. A. Legion: an instrument for high-throughput electrochemistry. ACS Meas. Sci. Au 3, 371–379 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, J. & Mo, Y. Wireless electrochemical reactor for accelerated exploratory study of electroorganic synthesis. ACS Cent. Sci. 9, 1820–1826 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Molnar, A. C. et al. in Proc. 2021 IEEE Custom Integrated Circuits Conference (CICC) 1–6 (IEEE, 2021).

  • Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pijper, B. et al. Addressing reproducibility challenges in high-throughput photochemistry. JACS A 4, 2585–2595 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Qi, N. et al. Development of a high intensity parallel photoreactor for high throughput screening. React. Chem. Eng. 7, 354–360 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Flamm, K. Measuring Moore’s Law: evidence from price, cost, and quality indexes. National Bureau of Economic Research Working Paper Series No. 24553. https://www.nber.org/papers/w24553 (2018).

  • Kirste, A., Elsler, B., Schnakenburg, G. & Waldvogel, S. R. Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoque, M. A. et al. Electrochemical PINOylation of methylarenes: improving the scope and utility of benzylic oxidation through mediated electrolysis. J. Am. Chem. Soc. 144, 15295–15302 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Siu, J. C., Parry, J. B. & Lin, S. Aminoxyl-catalyzed electrochemical diazidation of alkenes mediated by a metastable charge-transfer complex. J. Am. Chem. Soc. 141, 2825–2831 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lehnherr, D. et al. Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer. J. Am. Chem. Soc. 142, 468–478 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, B. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa e Silva, R. et al. Electrosynthesis of aryliminophosphoranes in continuous flow. Adv. Synth. Catal. 366, 955–960 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Imada, Y. et al. Metal- and reagent-free dehydrogenative formal benzyl–aryl cross-coupling by anodic activation in 1,1,1,3,3,3-hexafluoropropan-2-ol. Angew. Chem. Int. Ed. 57, 12136–12140 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Huang, H. et al. Electrophotocatalysis with a trisaminocyclopropenium radical dication. Angew. Chem. Int. Ed. 58, 13318–13322 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, Y., Struwe, J., Meyer, T. H., Oliveira, J. C. A. & Ackermann, L. Catalyst- and reagent-free electrochemical azole C–H amination. Chem. Eur. J. 24, 12784–12789 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anthony Romero, F. et al. The discovery of potent antagonists of NPBWR1 (GPR7). Bioorg. Med. Chem. Lett. 22, 1014–1018 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Thomas, R. P. et al. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem. Sci. 12, 12098–12106 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wan, Z. et al. Electrochemical oxidative C(sp3)–H azolation of lactams under mild conditions. Green Chem. 22, 3742–3747 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Libendi, S. S., Demizu, Y. & Onomura, O. Direct electrochemical α-cyanation of N-protected cyclic amines. Org. Biomol. Chem. 7, 351–356 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tajima, T. & Nakajima, A. Direct oxidative cyanation based on the concept of site isolation. J. Am. Chem. Soc. 130, 10496–10497 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mäder, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem. 63, 14243–14275 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, Q. et al. Cascade reactions of aryl-substituted terminal alkynes involving in situ-generated α-imino gold carbenes. Angew. Chem. Int. Ed. 63, e202313738 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Xie, X. & Sun, J. [4+3]-cycloaddition reaction of sulfilimines with cyclobutenones: access to benzazepinones. Org. Lett. 23, 8921–8925 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tian, X. et al. Sulfilimines as versatile nitrene transfer reagents: facile access to diverse aza-heterocycles. Angew. Chem. Int. Ed. 58, 3589–3593 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Okamura, H. & Bolm, C. Sulfoximines: synthesis and catalytic applications. Chem. Lett. 33, 482–487 (2004).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Klein, M., Troglauer, D. L. & Waldvogel, S. R. Dehydrogenative imination of low-valent sulfur compounds─fast and scalable synthesis of sulfilimines, sulfinamidines, and sulfinimidate esters. JACS Au 3, 575–583 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandlish, B. K., Padilla, A. G. & Shine, H. J. Ion radicals. XXXIII. Reactions of 10-methyl- and 10-phenylphenothiazine cation radicals with ammonia and amines. Preparation and reactions of 5-(N-alkyl)sulfilimines and 5-(N,N-dialkylamino)sulfonium salts. J. Org. Chem. 40, 2590–2595 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Shine, H. J. & Kim, K. Cation radicals. XXVII. Sulfilimine derivatives from reaction of thianthrene and N-phenylphenothiazine cation radicals with t-butylamine and dimethylamine. Tetrahedron Lett. 15, 99–101 (1974).

    Article 
    MATH 

    Google Scholar
     

  • Marzag, H., Schuler, M., Tatibouët, A. & Reboul, V. Synthesis of methionine-derived endocyclic sulfilimines and sulfoximines. Eur. J. Org. Chem. 2017, 896–900 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Luan, D. et al. Cyclic regulation of the sulfilimine bond in peptides and NC1 hexamers via the HOBr/H2Se conjugated system. Anal. Chem. 90, 9523–9528 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dannenberg, C. A., Bizet, V. & Bolm, C. Direct access to N-alkylsulfoximines from sulfides by a sequential imidation/oxidation procedure. Synthesis 47, 1951–1959 (2015).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments