Sunday, February 23, 2025
No menu items!
HomeNatureLearned magnetic map cues and two mechanisms of magnetoreception in turtles

Learned magnetic map cues and two mechanisms of magnetoreception in turtles

  • Lohmann, K. J., Goforth, K. M., Mackiewicz, A. G., Lim, D. S. & Lohmann, C. M. F. Magnetic maps in animal navigation. J. Comp. Physiol. A 208, 41–67 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Gould, J. L. Animal navigation: memories of home. Curr. Biol. 25, R104–R106 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gould, J. L. & Gould, C. G. Nature’s Compass (Princeton Univ. Press, 2012).

  • Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Henbest, K. B., Kukura, P., Rodgers, C. T., Hore, P. J. & Timmel, C. R. Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 126, 8102–8103 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Granger, J., Cummer, S. A., Lohmann, K. J. & Johnsen, S. Environmental sources of radio frequency noise: potential impacts on magnetoreception. J. Comp. Physiol. A 208, 83–95 (2022).

    Article 

    Google Scholar
     

  • Alerstam, T. & Bäckman, J. Ecology of animal migration. Curr. Biol. 28, R968–R972 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Putman, N. Marine migrations. Curr. Biol. 28, R972–R976 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warrant, E. et al. The Australian bogong moth Agrotis infusa: a long-distance nocturnal navigator. Front. Behav. Neurosci. 10, 77 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiltschko, R. & Wiltschko, W. The discovery of the use of magnetic navigational information. J. Comp. Physiol. A 208, 9–18 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea turtle navigation. Nature 428, 909–910 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brothers, J. R. & Lohmann, K. J. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25, 392–396 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wynn, J., Padget, O., Mouritsen, H., Perrins, C. & Guilford, T. Natal imprinting to the Earth’s magnetic field in a pelagic seabird. Curr. Biol. 30, 2869–2873.e2 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lohmann, K. J., Cain, S. D., Dodge, S. A. & Lohmann, C. M. Regional magnetic fields as navigational markers for sea turtles. Science 294, 364–366 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Putman, N. F. & Lohmann, C. M. F. The magnetic map of hatchling loggerhead sea turtles. Curr. Opin. Neurobiol. 22, 336–342 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Musick, J. A. & Limpus, C. J. in The Biology of Sea Turtles Vol. 1 (eds Lutz, P. L. & Musick, J. A.) 137–163 (CRC, 1997).

  • Avens, L., Braun-McNeill, J., Epperly, S. & Lohmann, K. J. Site fidelity and homing behavior in juvenile loggerhead sea turtles (Caretta caretta). Mar. Biol. 143, 211–220 (2003).

    Article 

    Google Scholar
     

  • Broderick, A. C., Coyne, M. S., Fuller, W. J., Glen, F. & Godley, B. J. Fidelity and over-wintering of sea turtles. Proc. R. Soc. B 274, 1533–1539 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Putman, N. F., Endres, C. S., Lohmann, C. M. F. & Lohmann, K. J. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21, 463–466 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Putman, N. F. et al. An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr. Biol. 24, 446–450 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Hester, J. T. & Lohmann, C. M. F. Long-distance navigation in sea turtles. Ethol. Ecol. Evol. 11, 1–23 (1999).

    Article 
    MATH 

    Google Scholar
     

  • Gaspar, P. et al. Oceanic dispersal of juvenile leatherback turtles: going beyond passive drift modeling. Mar. Ecol. Prog. Ser. 457, 265–284 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Scott, R., Marsh, R. & Hays, G. C. Ontogeny of long distance migration. Ecology 95, 2840–2850 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Avens, L. & Lohmann, K. J. Navigation and seasonal migratory orientation in juvenile sea turtles. J. Exp. Biol. 207, 1771–1778 (2004).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • González Carman, V. et al. Revisiting the ontogenetic shift paradigm: the case of juvenile green turtles in the SW Atlantic. J. Exp. Mar. Biol. Ecol. 429, 64–72 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Meylan, P. A., Hardy, R. F., Gray, J. A. & Meylan, A. B. A half-century of demographic changes in a green turtle (Chelonia mydas) foraging aggregation during an era of seagrass decline. Mar. Biol. 169, 74 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Putman, N. F. & Lohmann, K. J. Compatibility of magnetic imprinting and secular variation. Curr. Biol. 18, R596–R597 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J., Lohmann, C. M. F. & Endres, C. S. The sensory ecology of ocean navigation. J. Exp. Biol. 211, 1719–1728 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Dacke, M. et al. Multimodal cue integration in the dung beetle compass. Proc. Natl Acad. Sci. USA 116, 14248–14253 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nordmann, G. C., Hochstoeger, T. & Keays, D. A. Magnetoreception — a sense without a receptor. PLoS Biol. 15, e2003234 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wan, G., Hayden, A. N., Iiams, S. E. & Merlin, C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat. Commun. 12, 771 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bradlaugh, A. A. et al. Essential elements of radical pair magnetosensitivity in Drosophila. Nature 615, 111–116 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nimpf, S. & Keays, D. A. Myths in magnetosensation. iScience 25, 104454 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quinn, T. P., Merrill, R. T. & Brannon, E. L. Magnetic field detection in sockeye salmon. J. Exp. Zool. 217, 137–142 (1981).

    Article 
    MATH 

    Google Scholar
     

  • Lohmann, K. J. & Lohmann, C. M. F. A light-independent magnetic compass in the leatherback sea turtle. Biol. Bull. 185, 149–151 (1993).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Muheim, R., Sjöberg, S. & Pinzon-Rodriguez, A. Polarized light modulates light-dependent magnetic compass orientation in birds. Proc. Natl Acad. Sci. USA 113, 1654–1659 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Netušil, R. et al. Cryptochrome-dependent magnetoreception in a heteropteran insect continues even after 24 h in darkness. J. Exp. Biol. 224, jeb243000 (2021).

  • Wiltschko, R., Ahmad, M., Nießner, C., Gehring, D. & Wiltschko, W. Light-dependent magnetoreception in birds: the crucial step occurs in the dark. J. R. Soc. Interface 13, 20151010 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Light, P., Salmon, M. & Lohmann, K. J. Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J. Exp. Biol. 182, 1–10 (1993).

    Article 
    MATH 

    Google Scholar
     

  • Kirschvink, J. L., Walker, M. M. & Diebel, C. E. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11, 462–467 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irwin, W. P. & Lohmann, K. J. Disruption of magnetic orientation in hatchling loggerhead sea turtles by pulsed magnetic fields. J. Comp. Physiol. A 191, 475–480 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Munro, U., Munro, J. A., Phillips, J. B. & Wiltschko, W. Effect of wavelength of light and pulse magnetisation on different magnetoreception systems in a migratory bird. Aust. J. Zool. 45, 189–198 (1997).

    Article 
    MATH 

    Google Scholar
     

  • Wiltschko, W. & Wiltschko, R. Migratory orientation of European robins is affected by the wavelength of light as well as by a magnetic pulse. J. Comp. Physiol. A 177, 363–369 (1995).

  • Qin, S. et al. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xie, C. Searching for unity in diversity of animal magnetoreception: from biology to quantum mechanics and back. Innovation 3, 100229 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Meister, M. Physical limits to magnetogenetics. eLife 5, e17210 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kalmijn, A. J. in Handbook of Sensory Physiology Vol. 3 (ed. Fessard, A.) 147–200 (Springer-Verlag, 1974).

  • Nimpf, S. et al. A putative mechanism for magnetoreception by electromagnetic induction in the pigeon inner ear. Curr. Biol. 29, 4052–4059.e4 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Phillips, J. B. & Diego-Rasilla, F. J. The amphibian magnetic sense(s). J. Comp. Physiol. A 208, 723–742 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Wiltschko, R. et al. Magnetoreception in birds: the effect of radio-frequency fields. J. R. Soc. Interface 12, 20141103 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Szabo, B., Noble, D. W. A. & Whiting, M. J. Learning in non-avian reptiles 40 years on: advances and promising new directions. Biol. Rev. 96, 331–356 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Alldred, J. C. & Scollar, I. Square cross section coils for the production of uniform magnetic fields. J. Sci. Instrum. 44, 755–760 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Lohmann, K. & Lohmann, C. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J. Exp. Biol. 194, 23–32 (1994).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lohmann, K. J. & Lohmann, C. M. F. Detection of magnetic field intensity by sea turtles. Nature 380, 59–61 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Endres, C. S., Putman, N. F. & Lohmann, K. J. Perception of airborne odors by loggerhead sea turtles. J. Exp. Biol. 212, 3823–3827 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).

  • Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R version 0.7.2 https://cran.r-project.org/package=rstatix (2023).

  • Anderson, D. esvis: Visualization and estimation of effect sizes. R version 0.3.1 https://cran.r-project.org/package=esvis (2020).

  • Lüdecke, D. esc: Effect size computation for meta analysis. R version 0.5.1 https://cran.r-project.org/package=esc (2019).

  • Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear mixed effects models. R version 3.1-166 https://cran.r-project.org/package=nlme (2019).

  • Caldwell, A. R. Exploring equivalence testing with the updated TOSTER R package. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/ty8de (2022).

  • Lakens, D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci. 8, 355–362 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Massicotte, P. & South, A. rnaturalearth: World map data from natural earth. R version 1.0.1.9000 https://docs.ropensci.org/rnaturalearth/ (2023).

  • Pebesma, E. Simple Features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).

  • Putman, N. F., Verley, P., Endres, C. S. & Lohmann, K. J. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J. Exp. Biol. 218, 1044–1050 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Merritt, R., Purcell, C. & Stroink, G. Uniform magnetic field produced by three, four, and five square coils. Rev. Sci. Instrum. 54, 879–882 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Lohmann, K. J. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J. Exp. Biol. 155, 37–49 (1991).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Agostinelli, C. & Lund, U. R package “circular”: circular statistics. R version 0.5-1 https://cran.r-project.org/package=circular (2022).

  • COMSOL AB. COMSOL Multiphysics® (COMSOL AB, 2022).

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments