Luo, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022).
Sun, X. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020).
Chelsea, M. R. & Timothy, H. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).
Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).
Bank, M. S. & Hansson, S. V. The plastic cycle: a novel and holistic paradigm for the Anthropocene. Environ. Sci. Technol. 53, 7177–7179 (2019).
Li, Y. et al. In situ imaging of microplastics in living organisms based on mass spectrometry technology. Ecol. Environ. 3, 412–417 (2024).
Dris, R. et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 221, 453–458 (2017).
Liu, K. et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 675, 462–471 (2019).
Gaston, E., Woo, M., Steele, C., Sukumaran, S. & Anderson, S. Microplastics differ between indoor and outdoor air masses: Insights from multiple microscopy methodologies. Appl. Spectrosc. 74, 1079–1098 (2020).
Levermore, J. M., Smith, T. E. L., Kelly, F. J. & Wright, S. L. Detection of microplastics in ambient particulate matter using raman spectral imaging and chemometric analysis. Anal. Chem. 92, 8732–8740 (2020).
Li, L. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3, 929–937 (2020).
Larue, C. et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J. Hazard. Mater. 264, 98–106 (2014).
Xiong, T. et al. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ. Sci. Technol. 51, 5242–5251 (2017).
Servin, A. D. et al. Synchrotron Micro-XRF and Micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 46, 7637–7643 (2012).
Hong, J. et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 48, 4376–4385 (2014).
Jiao, M. et al. Dynamic fluctuations in plant leaf interception of airborne microplastics. Sci. Total Environ. 906, 167877 (2024).
Wang, F. et al. Micro(nano)plastics and terrestrial plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resour. Conserv. Recycl. 185, 106503 (2022).
Yu, Z., Xu, X., Guo, L., Jin, R. & Lu, Y. Uptake and transport of micro/nanoplastics in terrestrial plants: detection, mechanisms, and influencing factors. Sci. Total Environ. 907, 168155 (2024).
Wang, Y. et al. Positively charged microplastics induce strong lettuce stress responses from physiological, transcriptomic, and metabolomic perspectives. Environ. Sci. Technol. 56, 16907–16918 (2022).
Shi, R. et al. Toxicity mechanisms of nanoplastics on crop growth, interference of phyllosphere microbes, and evidence for foliar penetration and translocation. Environ. Sci. Technol. 58, 1010–1021 (2024).
Perera, K., Ziajahromi, S., Nash, S. B. & Leusch, F. D. L. Evaluating the retention of airborne microplastics on plant leaf: Influence of leaf morphology. Environ. Pollut. 346, 123673 (2024).
Canha, N. et al. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Sci. Rep. 13, 14278 (2023).
Liu, K. et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ. Sci. Technol. 53, 10612–10619 (2019).
Revell, L. E., Kuma, P., Le Ru, E. C., Somerville, W. R. C. & Gaw, S. Direct radiative effects of airborne microplastics. Nature 598, 462–467 (2021).
Coman, V. et al. Effects of polystyrene nanoplastics exposure on in vitro-grown Stevia rebaudiana plants. Plant Physiol. Biochem. 197, 107634 (2023).
Zhao, J. et al. Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution. Nat. Nanotechnol. 19, 406–414 (2023).
Eichert, T., Kurtz, A., Steiner, U. & Goldbach, H. E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 134, 151–160 (2008).
Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).
Avellan, A. et al. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ. Sci. Technol. 55, 13417–13431 (2021).
Burkhardt, J., Kaiser, H., Kappen, L. & Goldbach, H. E. The possible role of aerosols on stomatal conductivity for water vapour. Basic Appl. Ecol. 2, 351–364 (2001).
Hirano, T., Kiyota, M. & Aiga, I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 89, 255–261 (1995).
Bird, S. M. & Gray, J. E. Signals from the cuticle affect epidermal cell differentiation. N. Phytol. 157, 9–23 (2003).
Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicol 10, 257–278 (2016).
Gupta, P. & Bhatnagar, A. K. Spatial distribution of arsenic in different leaf tissues and its effect on structure and development of stomata and trichomes in mung bean, Vigna radiata (L.) Wilczek. Environ. Exp. Bot. 109, 12–22 (2015).
Jensen, K. H. et al. Sap flow and sugar transport in plants. Rev. Mod. Phys. 88, 035007 (2016).
Lee, W., Iannucci-Bergur, W. A., Eitzer, B. D., White, J. C. & Mattina, M. I. Plant uptake and translocation of air-borne chlordane and comparison with the soil-to-plant route. Chemosphere 53, 111–121 (2003).
Wang, M. et al. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. Nat. Nanotechnol. 18, 403–411 (2023).
Fackelmann, G. et al. Current levels of microplastic pollution impact wild seabird gut microbiomes. Nat. Ecol. Evol. 7, 698–706 (2023).
Li, L. et al. Confocal measurement of microplastics uptake by plants. MethodsX 7, 100750 (2020).
Rodríguez-Hernández, A. G., Muñoz-Tabares, J. A., Aguilar-Guzmán, J. C. & Vazquez-Duhalt, R. A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environ. Sci. Nano. 6, 2031–2036 (2019).
Rodenas-Torralba, E., Reis, B. F., Morales-Rubio, A. & de la Guardia, M. An environmentally friendly multicommutated alternative to the reference method for anionic surfactant determination in water. Talanta 66, 591–599 (2005).
Zhu, H. et al. Accumulation and translocation of polybrominated diphenyl ethers into plant under multiple exposure scenarios. Environ. Int. 143, 105947 (2020).
Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Sci. 281, 31–40 (2019).
Ding, S. et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 388, 1055–1060 (2012).
Wang, L., Zhang, J., Hou, S. & Sun, H. A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry. Environ. Sci. Technol. Lett. 4, 530–534 (2017).
Ribeiro, F. et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ. Sci. Technol. 54, 9408–9417 (2020).
Zhang, Y. et al. Comparison of detection methods of microplastics in landfill mineralized refuse and selection of degradation degree indexes. Environ. Sci. Technol. 55, 13802–13811 (2021).