Monday, April 14, 2025
No menu items!
HomeNatureLeaf absorption contributes to accumulation of microplastics in plants

Leaf absorption contributes to accumulation of microplastics in plants

  • Luo, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chelsea, M. R. & Timothy, H. The global odyssey of plastic pollution. Science 368, 1184–1185 (2020).

    Article 

    Google Scholar
     

  • Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bank, M. S. & Hansson, S. V. The plastic cycle: a novel and holistic paradigm for the Anthropocene. Environ. Sci. Technol. 53, 7177–7179 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. In situ imaging of microplastics in living organisms based on mass spectrometry technology. Ecol. Environ. 3, 412–417 (2024).


    Google Scholar
     

  • Dris, R. et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 221, 453–458 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, K. et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 675, 462–471 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gaston, E., Woo, M., Steele, C., Sukumaran, S. & Anderson, S. Microplastics differ between indoor and outdoor air masses: Insights from multiple microscopy methodologies. Appl. Spectrosc. 74, 1079–1098 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Levermore, J. M., Smith, T. E. L., Kelly, F. J. & Wright, S. L. Detection of microplastics in ambient particulate matter using raman spectral imaging and chemometric analysis. Anal. Chem. 92, 8732–8740 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3, 929–937 (2020).

    Article 

    Google Scholar
     

  • Larue, C. et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J. Hazard. Mater. 264, 98–106 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiong, T. et al. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ. Sci. Technol. 51, 5242–5251 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Servin, A. D. et al. Synchrotron Micro-XRF and Micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 46, 7637–7643 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hong, J. et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 48, 4376–4385 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiao, M. et al. Dynamic fluctuations in plant leaf interception of airborne microplastics. Sci. Total Environ. 906, 167877 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Micro(nano)plastics and terrestrial plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resour. Conserv. Recycl. 185, 106503 (2022).

    Article 

    Google Scholar
     

  • Yu, Z., Xu, X., Guo, L., Jin, R. & Lu, Y. Uptake and transport of micro/nanoplastics in terrestrial plants: detection, mechanisms, and influencing factors. Sci. Total Environ. 907, 168155 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Positively charged microplastics induce strong lettuce stress responses from physiological, transcriptomic, and metabolomic perspectives. Environ. Sci. Technol. 56, 16907–16918 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shi, R. et al. Toxicity mechanisms of nanoplastics on crop growth, interference of phyllosphere microbes, and evidence for foliar penetration and translocation. Environ. Sci. Technol. 58, 1010–1021 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Perera, K., Ziajahromi, S., Nash, S. B. & Leusch, F. D. L. Evaluating the retention of airborne microplastics on plant leaf: Influence of leaf morphology. Environ. Pollut. 346, 123673 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Canha, N. et al. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Sci. Rep. 13, 14278 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, K. et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ. Sci. Technol. 53, 10612–10619 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Revell, L. E., Kuma, P., Le Ru, E. C., Somerville, W. R. C. & Gaw, S. Direct radiative effects of airborne microplastics. Nature 598, 462–467 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Coman, V. et al. Effects of polystyrene nanoplastics exposure on in vitro-grown Stevia rebaudiana plants. Plant Physiol. Biochem. 197, 107634 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, J. et al. Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution. Nat. Nanotechnol. 19, 406–414 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Eichert, T., Kurtz, A., Steiner, U. & Goldbach, H. E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 134, 151–160 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Avellan, A. et al. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ. Sci. Technol. 55, 13417–13431 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Burkhardt, J., Kaiser, H., Kappen, L. & Goldbach, H. E. The possible role of aerosols on stomatal conductivity for water vapour. Basic Appl. Ecol. 2, 351–364 (2001).

    Article 

    Google Scholar
     

  • Hirano, T., Kiyota, M. & Aiga, I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 89, 255–261 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Bird, S. M. & Gray, J. E. Signals from the cuticle affect epidermal cell differentiation. N. Phytol. 157, 9–23 (2003).

    Article 

    Google Scholar
     

  • Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicol 10, 257–278 (2016).

    Article 

    Google Scholar
     

  • Gupta, P. & Bhatnagar, A. K. Spatial distribution of arsenic in different leaf tissues and its effect on structure and development of stomata and trichomes in mung bean, Vigna radiata (L.) Wilczek. Environ. Exp. Bot. 109, 12–22 (2015).

    Article 

    Google Scholar
     

  • Jensen, K. H. et al. Sap flow and sugar transport in plants. Rev. Mod. Phys. 88, 035007 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lee, W., Iannucci-Bergur, W. A., Eitzer, B. D., White, J. C. & Mattina, M. I. Plant uptake and translocation of air-borne chlordane and comparison with the soil-to-plant route. Chemosphere 53, 111–121 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. Nat. Nanotechnol. 18, 403–411 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fackelmann, G. et al. Current levels of microplastic pollution impact wild seabird gut microbiomes. Nat. Ecol. Evol. 7, 698–706 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. et al. Confocal measurement of microplastics uptake by plants. MethodsX 7, 100750 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rodríguez-Hernández, A. G., Muñoz-Tabares, J. A., Aguilar-Guzmán, J. C. & Vazquez-Duhalt, R. A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environ. Sci. Nano. 6, 2031–2036 (2019).

    Article 

    Google Scholar
     

  • Rodenas-Torralba, E., Reis, B. F., Morales-Rubio, A. & de la Guardia, M. An environmentally friendly multicommutated alternative to the reference method for anionic surfactant determination in water. Talanta 66, 591–599 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, H. et al. Accumulation and translocation of polybrominated diphenyl ethers into plant under multiple exposure scenarios. Environ. Int. 143, 105947 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yaaran, A., Negin, B. & Moshelion, M. Role of guard-cell ABA in determining steady-state stomatal aperture and prompt vapor-pressure-deficit response. Plant Sci. 281, 31–40 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ding, S. et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 388, 1055–1060 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wang, L., Zhang, J., Hou, S. & Sun, H. A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry. Environ. Sci. Technol. Lett. 4, 530–534 (2017).

    Article 

    Google Scholar
     

  • Ribeiro, F. et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ. Sci. Technol. 54, 9408–9417 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Comparison of detection methods of microplastics in landfill mineralized refuse and selection of degradation degree indexes. Environ. Sci. Technol. 55, 13802–13811 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments