Friday, December 27, 2024
No menu items!
HomeNatureLayered hybrid superlattices as designable quantum solids

Layered hybrid superlattices as designable quantum solids

  • Alferov, Z. I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 73, 767–782 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ni, Y. et al. Influence of the carbon-doping location on the material and electrical properties of a AlGaN/GaN heterostructure on Si substrate. Semicond. Sci. Technol. 30, 105037 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Williams, R. E. Modern GaAs Processing Methods (Artech House Publishers, 1990).

  • Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. J. Cryst. Growth 27, 118–125 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid devices. Nat. Phys. 16, 718–724 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Biswas, S., Li, Y., Winter, S. M., Knolle, J. & Valentí, R. Electronic properties of α–RuCl3 in proximity to graphene. Phys. Rev. Lett. 123, 237201 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, H.-K. & Knolle, J. Flat and correlated plasmon bands in graphene/α–RuCl3 heterostructures. Phys. Rev. B 104, 045140 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Multiferroicity in manganite/titanate superlattices determined by oxygen pressure-mediated cation defects. J. Appl. Phys. 113, 164302 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017). This paper presented the assembly of large-scale vdW superlattices through layer-by-layer stacking 2D atomic layers grown by chemical vapour deposition.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jin, G. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). This study first demonstrated multidimensional higher-order vdW superlattices constructed by rolling up vdW heterostructures.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu, S. et al. Synthesis and properties of lithium-graphite intercalation compounds. Mater. Sci. Eng. 38, 275–283 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Ohzuku, T., Iwakoshi, Y. & Sawai, K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). This study reported the first LHSL used in a spin-tunnelling junction, showing excellent spin polarization ratio.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). This study demonstrated the first bulk monolayer semiconductor prepared with electrochemical intercalation.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, Z. et al. Unconventional superconductivity in chiral molecule–TaS2 hybrid superlattices. Nature 632, 69–74 (2024). This work presented the first observation of field-free superconducting diode effect in chiral-molecule-intercalated superconducting LHSLs.

  • Hamaue, Y. & Aoki, R. Effects of organic intercalation on lattice vibrations and superconducting properties of 2H-NbS2. J. Phys. Soc. Jpn. 55, 1327–1335 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, M. Z. et al. FeSe-based superconductors with a superconducting transition temperature of 50 K. New J. Phys. 20, 123007 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, H. et al. Spacing dependent and cation doping independent superconductivity in intercalated 1T 2D SnSe2. 2D Mater. 6, 045048 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, G. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 125, 47202 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022). This paper represents a critical report of introducing magnetic ordering in LHSLs.

    Article 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Sun, J., Li, Y., Shi, F. & Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 17, 1741–1747 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, J. M. et al. Percolating superconductivity in air‐stable organic‐ion intercalated MoS2. Adv. Funct. Mater. 32, 2208761 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017). This paper first reported the signature of coexistence of superconductivity and magnetism in LHSLs.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tezze, D. et al. Tuning the magnetic properties of NiPS3 through organic-ion intercalation. Nanoscale 14, 1165–1173 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J. et al. Modular assembly of a library of hybrid superlattices and artificial quantum solids. Matter 7, 1131–1145 (2024). The above two studies first used the exfoliation and co-assembly method to prepare various LHSLs that are difficult to access using chemical and electrochemical intercalation.

    Article 

    Google Scholar
     

  • Chen, X. et al. Stage-1 cationic C60 intercalated graphene oxide films. Carbon 175, 131–140 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Aggregation‐induced emission luminogens for direct exfoliation of 2D layered materials in ethanol. Adv. Mater. Interfaces 7, 2000795 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pinkard, A., Champsaur, A. M. & Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 51, 919–929 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys. Mater. 3, 042006 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 18, 1425–1430 (2022). This study reports 2D Ising superconductivity in LHSLs.

    Article 
    CAS 

    Google Scholar
     

  • Zhou, B. et al. A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat. Synth. 3, 67–75 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, B. et al. Giant second harmonic generation in bulk monolayer MoS2 thin films. Matter 7, 2448–2459 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dalum, S. & HedegÃ¥rd, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian, Z. et al. Hybrid chiral MoS2 layers for spin-polarized charge transport and spin-dependent electrocatalytic applications. Adv. Sci. 9, 2201063 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bian, Z. et al. Chiral van der Waals superlattices for enhanced spin‐selective transport and spin‐dependent electrocatalytic performance. Adv. Mater. 35, 2306061 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, B., Kim, Y. & Lee, M. Supramolecular chiral 2D materials and emerging functions. Adv. Mater. 32, 1905669 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gamble, F. R., DiSalvo, F. J., Klemm, R. A. & Geballe, T. H. Superconductivity in layered structure organometallic crystals. Science 168, 568–570 (1970). This is one of the earliest studies on tailored superconductivity in LHSLs.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gamble, F. R., Osiecki, J. H. & DiSalvo, F. J. Some superconducting intercalation complexes of TaS2 and substituted pyridines. J. Chem. Phys. 55, 3525–3530 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Woollam, J. A. & Somoano, R. B. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2. Phys. Rev. B 13, 3843–3853 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koike, Y., Tanuma, S., Suematsu, H. & Higuchi, K. Superconductivity in the graphite-potassium intercalation compound C8K. J. Phys. Chem. Solids 41, 1111–1118 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, D. et al. Evidence of finite-momentum pairing in a centrosymmetric bilayer. Nat. Phys. 19, 1599–1604 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. 119, e2119548119 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, Y.-T., Vaezi, A., Fischer, M. H. & Kim, E.-A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 8, 14985 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y., Li, D., Wu, C. L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ryu, Y. K., Frisenda, R. & Castellanos-Gomez, A. Superlattices based on van der Waals 2D materials. Chem. Commun. 55, 11498–11510 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, J. M., Tezze, D., Ormaza, M., Hueso, L. E. & Gobbi, M. Engineering magnetism and superconductivity in van der Waals materials via organic‐ion intercalation. Adv. Phys. Res. 2, 2200084 (2023).

    Article 

    Google Scholar
     

  • Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B 81, 041203 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 11, 3860 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. et al. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator heterostructures. Nano Lett. 19, 6144–6151 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Chiral helimagnetism and one-dimensional magnetic solitons in a Cr-intercalated transition metal dichalcogenide. Adv. Mater. 33, 2101131 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl Acad. Sci. 118, e2023337118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebmann, M. et al. Giant Rashba-type spin splitting in ferroelectric GeTe(111). Adv. Mater. 28, 560–565 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinaldi, C. et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 18, 2751–2758 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Djani, H. et al. Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides. npj Quantum Mater. 4, 51 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yao, Q.-F. et al. Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Phys. Rev. B 95, 165401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Picozzi, S. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2, 10 (2014).

    Article 

    Google Scholar
     

  • Yang, H., Yang, S. H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat. Mater. 9, 586–593 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bulaevskii, L. N., Kuzii, V. V. & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290–294 (1977).

    ADS 

    Google Scholar
     

  • Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor-ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hikino, S., Takahashi, S., Mori, M. & Maekawa, S. Proximity effects in a superconductor/ferromagnet junction. J. Phys. Chem. Solids 69, 3257–3260 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cai, R. et al. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat. Commun. 12, 6725 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sanchez-Manzano, D. et al. Extremely long-range, high-temperature Josephson coupling across a half-metallic ferromagnet. Nat. Mater. 21, 188–194 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feofanov, A. K. et al. Implementation of superconductor/ferromagnet/superconductor π-shifters in superconducting digital and quantum circuits. Nat. Phys. 6, 593–597 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, M. Q. et al. Direct observation of full-gap superconductivity and pseudogap in two-dimensional fullerides. Phys. Rev. Lett. 124, 187001 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. I. J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Van der Donck, M. et al. Three-dimensional electron-hole superfluidity in a superlattice close to room temperature. Phys. Rev. B 102, 060503 (2020).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarenia, M., Hamilton, A. R., Peeters, F. M. & Neilson, D. Multiband mechanism for the sign reversal of Coulomb drag observed in double bilayer graphene heterostructures. Phys. Rev. Lett. 121, 36601 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anton-Solanas, C. et al. Bosonic condensation of exciton–polaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, D., Choi, J., Shih, C. K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujita, M., Washizu, S., Ogura, K. & Kwon, Y. J. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook, T. R., Zheng, Y. R. & Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113, 734–777 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. F., Ding, S. Y., Liu, J. M., Wang, W. & Zheng, Q. Y. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J. Mater. Chem. C 3, 10066–10069 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Z.-B. et al. Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nat. Commun. 13, 2180 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shuku, Y., Suizu, R., Nakano, S., Tsuchiizu, M. & Awaga, K. Engineering Dirac cones and topological flat bands with organic molecules. Phys. Rev. B 107, 155123 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Controllable van der Waals gaps by water adsorption. Nat. Nanotechnol. 19, 448–454 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. et al. Twisted bilayer graphene induced by intercalation. Nano Lett. 23, 5475–5481 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Black, C. T., Murray, C. B., Sandstrom, R. L. & Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalapati, S. et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 6, 7786 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelley, E. G. et al. Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway. Nat. Commun. 5, 3599 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kaleeswaran, D., Vishnoi, P. & Murugavel, R. [3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C 3, 7159–7171 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. M. et al. Self-intercalated 1T-FeSe2 as an effective kagome lattice. Nano Lett. 23, 954–961 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, L., Chen, Q., Barr, A. D., Barr, A. R. & Fiete, G. A. Floquet Hofstadter butterfly on the kagome and triangular lattices. Phys. Rev. B 98, 245145 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Room-temperature long-range ferromagnetic order in a confined molecular monolayer. Nat. Phys. 20, 281–286 (2024). This study resolves a highly ordered molecular layer self-assembled on 2DACs.

    Article 
    CAS 

    Google Scholar
     

  • Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Dines, M. B. Isocyanide intercalation complexes of titanium and tantalum disulfide. Inorg. Chem. 17, 762–763 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments