Friday, February 13, 2026
No menu items!
HomeNatureLasting Lower Rhine–Meuse forager ancestry shaped Bell Beaker expansion

Lasting Lower Rhine–Meuse forager ancestry shaped Bell Beaker expansion

  • Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amkreutz, L. W. S. W. Persistent traditions. A Long-Term Perspective on Communities in the Process of Neolithisation in the Lower Rhine Area (5500–2500 Cal BC) (Sidestone Press, 2013).

  • Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papac, L. et al. Dynamic changes in genomic and social structures in third millennium BCE central Europe. Sci. Adv. 7, eabi6941 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robb, J. Material culture, landscapes of action, and emergent causation: a new model for the origins of the European Neolithic. Curr. Anthropol. 54, 657–683 (2013).

    Article 

    Google Scholar
     

  • Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofmann, D. in Something Out of the Ordinary? Interpreting Diversity in the Early Neolithic Linearbandkeramik and Beyond (eds Amkreutz, L. W. S. W. et al.) 191–226 (Cambridge Scholars Press, 2016).

  • Kirschneck, E. The phenomena la Hoguette and Limburg—technological aspects. Open Archaeol. 7, 1295–1344 (2021).

    Article 

    Google Scholar
     

  • Crombé, P. et al. New evidence on the earliest domesticated animals and possible small-scale husbandry in Atlantic NW Europe. Sci. Rep. 10, 20083 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brusgaard, N. Ø et al. Early animal management in northern Europe: multi-proxy evidence from Swifterbant, the Netherlands. Antiquity 98, 654–671 (2024).

    Article 

    Google Scholar
     

  • Kooijmans, L. P. L. & Jongste, P. F. B. A Neolithic Settlement on the Dutch North Sea Coast c. 3500 CAL BC (Analecta Praehistorica Leidensia, 2006).

  • Dreshaj, M., Dee, M., Brusgaard, N., Raemaekers, D. & Peeters, H. High-resolution Bayesian chronology of the earliest evidence of domesticated animals in the Dutch wetlands (Hardinxveld-Giessendam archaeological sites). PLoS ONE 18, e0280619 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menne, J. & Brunner, M. Transition from Swifterbant to Funnelbeaker: a Bayesian chronological model. Open Archaeol. 7, 1235–1243 (2021).

    Article 

    Google Scholar
     

  • Goossens, T. A. Opgraving Hellevoetsluis-Ossenhoek. Een Nederzetting van de Vlaardingen-Groep op een Kwelderrug in de Gemeente Hellevoetsluis (ARCHOL, 2009).

  • Bourgeois, Q. Monuments on the Horizon: The Formation of the Barrow Landscape throughout the 3rd and 2nd Millennium BC (Sidestone Press, 2013).

  • Beckerman, S. M. Corded Ware Coastal Communities: Using Ceramic Analysis to Reconstruct Third Millennium BC Societies in the Netherlands (Sidestone Press, 2015).

  • Fokkens, H., Steffens, B. J. W. & van As, S. F. M. Farmers, fishers, fowlers, hunters: knowledge generated by development-led archaeology about the Late Neolithic, the Early Bronze Age and the start of the Middle Bronze Age (2850–1500 cal BC) in the Netherlands. Ned. Archeol. Rapp. 53, 978–990 (2016).


    Google Scholar
     

  • Furholt, M. Re-integrating archaeology: a contribution to aDNA studies and the migration discourse on the 3rd millennium BC in Europe. Proc. Prehist. Soc. 85, 115–129 (2019).

    Article 

    Google Scholar
     

  • Kroon, E. J. Serial Learners. Interactions between Funnel Beaker West and Corded Ware Communities in the Netherlands during the Third Millennium BCE from the Perspective of Ceramic Technology (Sidestone Press, 2024).

  • Wentink, K. Stereotype. The Role of Grave Sets in Corded Ware and Bell Beaker Funerary Practices (Sidestone Press, 2020).

  • Dyselinck, T. et al. Gent-Hogeweg, Vlakdekkende Opgraving. Mariakerke BAAC-Rapport A-11.0045 (BAAC, 2013).

  • Vander Linden, M. What linked the Bell Beakers in third millennium BC Europe? Antiquity 81, 343–352 (2007).

    Article 

    Google Scholar
     

  • Lanting, J. N. De NO-Nederlandse/NW-Duitse Klokbekergroep: culturele achtergrond, typologie van het aardewerk, datering, verspreiding en grafritueel. Palaeohistoria 49–50, 11–326 (2008).


    Google Scholar
     

  • Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Immel, A. et al. Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Commun. Biol. 4, 113 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veselka, B. et al. Assembling ancestors: the manipulation of Neolithic and Gallo-Roman skeletal remains at Pommerœul, Belgium. Antiquity 98, 1576–1591 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ten Anscher, T. J., Knippenberg, S., van der Linde, C. M., Roessingh, W. & Willemse, N. W. Doorbraken aan de Rijn. Een Swifterbant-Gehucht, een Hazendonk-Nederzetting en Erven en Graven uit de Bronstijd in Medel-De Roeskamp RAAP-Rapport 6519, Archol Rapport 742, ADC Rapport A-16.0207 (BAAC, 2023).

  • Arzelier, A. et al. Neolithic genomic data from southern France showcase intensified interactions with hunter-gatherer communities. iScience 25, 105387 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seguin-Orlando, A. et al. Heterogeneous hunter-gatherer and steppe-related ancestries in Late Neolithic and Bell Beaker genomes from present-day France. Curr. Biol. 31, 1072–1083 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, aaz5344 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gelabert, P. et al. Social and genetic diversity in first farmers of central Europe. Nat. Hum. Behav. https://doi.org/10.1038/s41562-024-02034-z (2024).

  • Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourgeois, Q. P. J. et al. Spatiotemporal reconstruction of Corded Ware and Bell Beaker burial rituals reveals complex dynamics divergent from steppe ancestry. Sci. Adv. 11, eadx22622262 (2025).

    Article 

    Google Scholar
     

  • Lazaridis, I. et al. The genetic origin of the Indo-Europeans. Nature https://doi.org/10.1038/s41586-024-08531-5 (2025).

  • Linderholm, A. et al. Corded Ware cultural complexity uncovered using genomic and isotopic analysis from south-eastern Poland. Sci. Rep. 10, 6885 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allentoft, M. E. et al. Population genomics of post-glacial western Eurasia. Nature 625, 301–311 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunel, S. et al. Ancient genomes from present-day France unveil 7, 000 years of its demographic history. Proc. Natl Acad. Sci USA https://doi.org/10.1073/pnas.1918034117 (2020).

  • Parasayan, O. et al. Late Neolithic collective burial reveals admixture dynamics during the third millennium BCE and the shaping of the European genome. Sci. Adv. 10, eadl2468 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyd, V. in Yamnaya Interactions. Proceedings of the International Workshop held in Helsinki, 25–26 April 2019. The Yamnaya Impact on Prehistoric Europe (eds Heyd, V. et al.) 383–414 (Archaeolingua Alapítvány, (2021).

  • Jeunesse, C. The dogma of the Iberian origin of the Bell Beaker: attempting its deconstruction. J. Neolit. Archaeol. 16, 158–166 (2015).


    Google Scholar
     

  • Price, T. D., Knipper, C., Grupe, G. & Smrcka, V. Strontium isotopes and prehistoric human migration: The Bell Beaker period in Central Europe. Eur. J. Archaeol. 7, 9–40 (2004).

    Article 

    Google Scholar
     

  • Parker Pearson, M. et al. The Beaker People: Isotopes, Mobility and Diet in Prehistoric Britain Vol. 7 (Oxbow Books, 2019).

  • Zvelebil, M. in Archaeogenetics: DNA and the Population Prehistory of Europe (eds Renfrew, C. & Boyle, K.) 57–79 (McDonald Institute Monographs, 2000).

  • Armit, I. & Reich, D. The return of the Beaker folk? Rethinking migration and population change in British prehistory. Antiquity 95, 1464–1477 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cleal, R. M. J. & Pollard, J. in Is There a British Chalcolithic? People, Place and Polity in the Later 3rd Millennium (eds Allen, M. J. et al.) Vol. 4, 317–332 (Oxbow Books, 2012).

  • Booth, T. J., Brück, J., Brace, S. & Barnes, I. Tales from the supplementary information: ancestry change in Chalcolithic–Early Bronze Age Britain was gradual with varied kinship organization. Camb. Archaeol. J. https://doi.org/10.1017/s0959774321000019 (2021).

  • Gibson, A. Beakers in Britain. The Beaker package reviewed. Préhist. Méd. 8, 32 (2020).

  • Adler, C. J., Haak, W., Donlon, D. & Cooper, A. Survival and recovery of DNA from ancient teeth and bones. J. Archaeol. Sci. 38, 956–964 (2011).

    Article 

    Google Scholar
     

  • Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat. Protoc. 14, 1194–1205 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. BioTechniques 59, 87–93 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dulias, K. et al. Ancient DNA at the edge of the world: continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proc. Natl Acad. Sci. USA 119, e2108001119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B 370, 20130624 (2015).

  • Gansauge, M. T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohland, N. et al. Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome Res. 32, 2068–2078 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Article 

    Google Scholar
     

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biagini, S. A. et al. People from Ibiza: an unexpected isolate in the Western Mediterranean. Eur. J. Hum. Genetics 27, 941–951 (2019).

  • Schönherr, S., Weissensteiner, H., Kronenberg, F. & Forer, L. Haplogrep 3—an interactive haplogroup classification and analysis platform. Nucleic Acids Res. 51, W263–W268 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabdm4247 (2022).

    Article 

    Google Scholar
     

  • Fowler, C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Rivollat, M. et al. Extensive pedigrees reveal the social organization of a Neolithic community. Nature https://doi.org/10.1038/s41586-023-06350- (2023).

  • Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fournier, R., Fulton, A. P. & Reich, D. A SNP panel for co-analysis of capture and shotgun ancient DNA data. Preprint at bioRxiv https://doi.org/10.1101/2025.07.30.667733 (2025).

  • Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Philippsen, B. The freshwater reservoir effect in radiocarbon dating. Herit. Sci. 1, 24 (2013).

    Article 

    Google Scholar
     

  • van der Plicht, J. & Streurman, H. J. A new model for radiocarbon dating of marine shells from the Netherlands. Radiocarbon 67, 378–411 (2025).

    Article 

    Google Scholar
     

  • Kamjan, S., Gillis, R. E., Cakirlar, C. & Raemaekers, D. C. M. Specialized cattle farming in the Neolithic Rhine-Meuse Delta: results from zooarchaeological and stable isotope (δ18O, δ13C, δ15N) analyses. PLoS ONE 15, e0240464 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth (2024); docs.ropensci.org/rnaturalearth.

  • RELATED ARTICLES

    Most Popular

    Recent Comments