Friday, January 23, 2026
No menu items!
HomeNatureLarge-scale dynamos driven by shear-flow-induced jets

Large-scale dynamos driven by shear-flow-induced jets

  • Parker, E. N. Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955).

    Article 
    MathSciNet 

    Google Scholar
     

  • Batchelor, G. K. & Proudman, I. The effects. of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Math. 7, 83–103 (1954).

    Article 
    MathSciNet 

    Google Scholar
     

  • Terry, P. W. Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109–165 (2000).

    Article 

    Google Scholar
     

  • Yoshizawa, A. Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields. Phys. Fluids B 2, 1589–1600 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Kiuchi, K., Cerdá-Durán, P., Kyutoku, K., Sekiguchi, Y. & Shibata, M. Efficient magnetic-field amplification due to the Kelvin–Helmholtz instability in binary neutron star mergers. Phys. Rev. D 92, 124034 (2015).

    Article 

    Google Scholar
     

  • Kiuchi, K., Reboul-Salze, A., Shibata, M. & Sekiguchi, Y. A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers. Nat. Astron. 8, 298–307 (2024).

    Article 

    Google Scholar
     

  • Price, D. J. & Rosswog, S. Producing ultrastrong magnetic fields in neutron star mergers. Science 312, 719–722 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsokaros, A., Bamber, J., Ruiz, M. & Shapiro, S. L. Masking the equation-of-state effects in binary neutron star mergers. Phys. Rev. Lett. 134, 121401 (2025).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu, A. et al. Detection of an ~20 kpc coherent magnetic field in the outskirt of merging spirals: the Antennae galaxies. Mon. Not. R. Astron. Soc. 464, 1003–1017 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961).

  • Palenzuela, C. et al. Turbulent magnetic field amplification in binary neutron star mergers. Phys. Rev. D 106, 023013 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Vasil, G. M. et al. The solar dynamo begins near the surface. Nature 629, 769 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terry, P. W. in Zonal Jets (eds Galperin, B. & Read, P. L.) 181–193 (Cambridge Univ. Press, 2019).

  • Hazra, G., Nandy, D., Kitchatinov, L. & Choudhuri, A. R. Mean field models of flux transport dynamo and meridional circulation in the Sun and stars. Space Sci. Rev. 219, 39 (2023).

    Article 

    Google Scholar
     

  • Gizon, L. et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science 368, 1469–1472 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abramowicz, M. A., Lanza, A., Spiegel, E. A. & Szuszkiewicz, E. Vortices on accretion disks. Nature 356, 41–43 (1992).

    Article 

    Google Scholar
     

  • Chadayammuri, U. et al. Constraining merging galaxy clusters with X-ray and lensing simulations and observations: the case of Abell 2146. Mon. Not. R. Astron. Soc. 509, 1201–1216 (2021).

    Article 

    Google Scholar
     

  • Chadayammuri, U., ZuHone, J., Nulsen, P., Nagai, D. & Russell, H. Turbulent magnetic fields in merging clusters: a case study of Abell 2146. Mon. Not. R. Astron. Soc. 512, 2157–2170 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Neronov, A. & Vovk, I. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–75 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandenburg, A. & Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kulsrud, R. M. & Zweibel, E. G. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008).

    Article 

    Google Scholar
     

  • Tobias, S. M. & Cattaneo, F. Shear-driven dynamo waves at high magnetic Reynolds number. Nature 497, 463–465 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Squire, J. & Bhattacharjee, A. Generation of large-scale magnetic fields by small-scale dynamo in shear flows. Phys. Rev. Lett. 115, 175003 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Steenbeck, M., Krause, F. & Radler, K.-H. Z. Naturforsch. 21a, 369–376 (1966).

    Article 

    Google Scholar
     

  • Cattaneo, F. & Hughes, D. W. Nonlinear saturation of the turbulent α effect. Phys. Rev. E 54, R4532 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Vainshtein, S. & Cattaneo, F. Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992).

    Article 

    Google Scholar
     

  • Brandenburg, A., Elstner, D., Masada, Y. & Pipin, V. Turbulent processes and mean-field dynamo. Space Sci. Rev. 219, 55 (2023).

    Article 

    Google Scholar
     

  • Pouquet, A., Frisch, U. & Leorat, J. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976).

    Article 

    Google Scholar
     

  • Howe, R., Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y. P. & Schou, J. Update on global helioseismic observations of the solar torsional oscillation. Res. Notes AAS 6, 261 (2022).

    Article 

    Google Scholar
     

  • Smith, K. M., Caulfield, C. P. & Taylor, J. R. Turbulence in forced stratified shear flows. J. Fluid Mech. 910, A42 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hathaway, D. H. The solar cycle. Living Rev. Sol. Phys. 39, 227 (2015).


    Google Scholar
     

  • Ebrahimi, F. & Blackman, E. G. Radially dependent large-scale dynamos in global cylindrical shear flows and the local Cartesian limit. Mon. Not. R. Astron. Soc. 459, 1422–1431 (2016).

    Article 

    Google Scholar
     

  • Elsässer, W. M. The hydromagnetic equations. Phys. Rev. 79, 183 (1950).

    Article 

    Google Scholar
     

  • Bendre, A. B., Subramanian, K., Elstner, D. & Gressel, O. Turbulent transport coefficients in galactic dynamo simulations using singular value decomposition. Mon. Not. R. Astron. Soc. 491, 3870–3883 (2020).

    Article 

    Google Scholar
     

  • Lecoanet, D. et al. A validated non-linear Kelvin–Helmholtz benchmark for numerical hydrodynamics. Mon. Not. R. Astron. Soc. 455, 4274–4288 (2016).

    Article 

    Google Scholar
     

  • Zhang, H. & Brandenburg, A. Solar kinetic energy and cross helicity spectra. Astrophys. J. Lett. 862, L17 (2018).

    Article 

    Google Scholar
     

  • Rahbarnia, K. et al. Direct observation of the turbulent EMF and transport of magnetic field in a liquid sodium experiment. Astrophys. J. 759, 80 (2012).

    Article 

    Google Scholar
     

  • Kaplan, E. J. et al. Reducing global turbulent resistivity by eliminating large eddies in a spherical liquid-sodium experiment. Phys. Rev. Lett. 106, 254502 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondal, T. & Bhat, P. Unified treatment of mean-field dynamo and angular-momentum transport in magnetorotational instability-driven turbulence. Phys. Rev. E 108, 065201 (2023).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, J. B. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974).

    Article 

    Google Scholar
     

  • Zrake, J. & MacFadyen, A. I. Magnetic energy production by turbulence in binary neutron star mergers. Astrophys. J. Lett. 769, L29 (2013).

    Article 

    Google Scholar
     

  • Kunnumkai, K. et al. Detecting electromagnetic counterparts to LIGO/Virgo/KAGRA gravitational-wave events with DECam: neutron star mergers. Astrophys. J. 993, 15 (2025).

  • Maggiore, M. et al. Science case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 03, 050 (2020).

    Article 

    Google Scholar
     

  • Radice, D. General-relativistic large-eddy simulations of binary neutron star mergers. Astrophys. J. Lett. 838, L2 (2017).

    Article 

    Google Scholar
     

  • Mandal, K., Kosovichev, A. G. & Pipin, V. V. Helioseismic properties of dynamo waves in the variation of solar differential rotation. Astrophys. J. 973, 36 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yokoi, N. Unappreciated cross-helicity effects in plasma physics: anti-diffusion effects in dynamo and momentum transport. Rev. Mod. Plasma Phys. 7, e33 (2023).

    Article 

    Google Scholar
     

  • Chakraborty, S., Choudhuri, A. R. & Chatterjee, P. Why does the Sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Yokoi, N., Schmitt, D., Pipin, V. & Hamba, F. A new simple dynamo model for stellar activity cycle. Astrophys. J. 824, 67 (2016).

    Article 

    Google Scholar
     

  • Pecora, F. et al. Relaxation of the turbulent magnetosheath. Mon. Not. R. Astron. Soc. 525, 67–72 (2023).

    Article 

    Google Scholar
     

  • Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Three-dimensional shear-flow instability saturation via stable modes. Phys. Fluids 35, 105151 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B. P. Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ascher, U. M., Ruuth, S. J. & Spiteri, R. J. Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wang, D. & Ruuth, S. J. Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math. 26, 838–855 (2008).

    MathSciNet 

    Google Scholar
     

  • Mininni, P. D., Alexakis, A. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics II. Kinematic dynamo. Phys. Rev. E 72, 046302 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Alexakis, A., Mininni, P. D. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72, 046301 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Tripathi, B. et al. Codes, data, and additional materials for “Large-scale dynamos driven by shear-flow-induced jets”. Zenodo https://doi.org/10.5281/zenodo.17162239 (2025).

  • Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Mechanism for sequestering magnetic energy at large scales in shear-flow turbulence. Phys. Plasmas 29, 070701 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Marston, J. B., Conover, E. & Schneider, T. Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 1955–1966 (2008).

    Article 

    Google Scholar
     

  • Cope, L., Garaud, P. & Caulfield, C. The dynamics of stratified horizontal shear flows at low Péclet number. J. Fluid Mech. 903, A1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pueschel, M. J., Jenko, F., Told, D. & Büchner, J. Gyrokinetic simulations of magnetic reconnection. Phys. Plasmas 18, 112102 (2011).

    Article 

    Google Scholar
     

  • Pueschel, M. J. et al. Magnetic reconnection turbulence in strong guide fields: Basic properties and application to coronal heating. Astrophys. J. Suppl. Ser. 213, 30 (2014).

    Article 

    Google Scholar
     

  • Gruzinov, A. V. & Diamond, P. H. Self-consistent mean field electrodynamics of turbulent dynamos. Phys. Plasmas 2, 1941–1946 (1995).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Biglari, H., Diamond, P. H. & Terry, P. W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 1–4 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Townsend, A. A. The Structure of Turbulent Shear Flow 2nd edn (Cambridge Univ. Press, 1976).

  • Verma, M. K. Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge Univ. Press, 2019).

  • Reuter, K., Jenko, F. & Forest, C. B. Turbulent magnetohydrodynamic dynamo action in a spherically bounded von Kármán flow at small magnetic Prandtl numbers. N. J. Phys. 13, 073019 (2011).

    Article 

    Google Scholar
     

  • Baiotti, L., Giacomazzo, B. & Rezzolla, L. Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008).

    Article 

    Google Scholar
     

  • Most, E. R. & Quataert, E. Flares, jets, and quasiperiodic outbursts from neutron star merger remnants. Astrophys. J. Lett. 947, L15 (2023).

    Article 

    Google Scholar
     

  • Combi, L. & Siegel, D. M. Jets from neutron-star merger remnants and massive blue kilonovae. Phys. Rev. Lett. 131, 231402 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olausen, S. A. & Kaspi, V. M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 212, 6 (2014).

    Article 

    Google Scholar
     

  • Bahramian, A. & Degenaar, N. Low-Mass X-ray Binaries (Springer Nature, 2022).

  • Anderson, M. et al. Magnetized neutron-star mergers and gravitational-wave signals. Phys. Rev. Lett. 100, 191101 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Aguilera-Miret, R., Viganò, D. & Palenzuela, C. Universality of the turbulent magnetic field in hypermassive neutron stars produced by binary mergers. Astrophys. J. Lett. 926, L31 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Charbonneau, P. Dynamo models of the solar cycle. Living Rev. Sol. Phys. 17, 4 (2020).

    Article 

    Google Scholar
     

  • Rüdiger, G., Küker, M. & Schnerr, R. S. Cross helicity at the solar surface by simulations and observations. Astron. Astrophys. 546, A23 (2012).

    Article 

    Google Scholar
     

  • Brandenburg, A. The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005).

    Article 

    Google Scholar
     

  • Yousef, T. A. et al. Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blackman, E. G. Mean magnetic field generation in sheared rotators. Astrophys. J. 529, 138–145 (2000).

    Article 

    Google Scholar
     

  • Brandenburg, A. & Urpin, V. Magnetic fields in young galaxies due to the cross-helicity effect. Astron. Astrophys. 332, L41–L44 (1998).


    Google Scholar
     

  • Elias-López, A., Del Sordo, F. & Viganò, D. Vorticity and magnetic dynamo from subsonic expansion waves. Astron. Astrophys. 677, A46 (2023).

    Article 

    Google Scholar
     

  • Hughes, D. W. & Proctor, M. R. E. Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501 (2008).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments