Wednesday, August 13, 2025
No menu items!
HomeNatureLarge riverbed sediment flux sustained for a decade after an earthquake

Large riverbed sediment flux sustained for a decade after an earthquake

  • Keefer, D. K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 95, 406–421 (1984).


    Google Scholar
     

  • Keefer, D. K. Investigating landslides caused by earthquakes – a historical review. Surv. Geophys. 23, 473–510 (2002).


    Google Scholar
     

  • Hovius, N. et al. Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet. Sci. Lett. 304, 347–355 (2011).

    CAS 

    Google Scholar
     

  • Yanites, B. J., Tucker, G. E., Mueller, K. J. & Chen, Y.-G. How rivers react to large earthquakes: evidence from central Taiwan. Geology 38, 639–642 (2010).


    Google Scholar
     

  • Pearce, A. J. & Watson, A. J. Effects of earthquake-induced landslides on sediment budget and transport over a 50-yr period. Geology 14, 52–55 (1986).


    Google Scholar
     

  • Fan, X. et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 57, 421–503 (2019).


    Google Scholar
     

  • Dingle, E. H., Attal, M. & Sinclair, H. D. Abrasion-set limits on Himalayan gravel flux. Nature 544, 471–474 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C.-Y. Sedimentary impacts from landslides in the Tachia River Basin, Taiwan. Geomorphology 105, 355–365 (2009).


    Google Scholar
     

  • Densmore, A. L. et al. Reply to ‘Isostasy can’t be ignored’. Nat. Geosci. 5, 83–84 (2012).

    CAS 

    Google Scholar
     

  • Emberson, R., Hovius, N., Galy, A. & Marc, O. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nat. Geosci. 9, 42–45 (2016).

    CAS 

    Google Scholar
     

  • Frith, N. V. Carbon export from mountain forests enhanced by earthquake-triggered landslides over millennia. Nat. Geosci. 11, 772–776 (2018).

    CAS 

    Google Scholar
     

  • Parker, R. N. et al. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat. Geosci. 4, 449–452 (2011).

    CAS 

    Google Scholar
     

  • Wang, J. et al. Long-term patterns of hillslope erosion by earthquake-induced landslides shape mountain landscapes. Sci. Adv. 6, eaaz6446 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marc, O., Hovius, N., Meunier, P., Uchida, T. & Hayashi, S. Transient changes of landslide rates after earthquakes. Geology 43, 883–886 (2015).


    Google Scholar
     

  • Fan, X. et al. Spatio-temporal evolution of mass wasting after the 2008 Mw 7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory. Landslides 15, 2325–2341 (2018).


    Google Scholar
     

  • Francis, O. et al. The fate of sediment after a large earthquake. J. Geophys. Res. Earth Surface 127, e2021JF006352 (2022).


    Google Scholar
     

  • Wang, J. et al. Controls on fluvial evacuation of sediment from earthquake-triggered landslides. Geology 43, 115–118 (2015).


    Google Scholar
     

  • Attal, M. & Lavé, J. Changes of bedload characteristics along the Marsyandi River (central Nepal): implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts. Geol. Soc. Am. Special Pap. 398, 143–171 (2006).


    Google Scholar
     

  • Croissant, T., Lague, D., Steer, P. & Davy, P. Rapid post-seismic landslide evacuation boosted by dynamic river width. Nat. Geosci. 10, 680–684 (2017).

    CAS 

    Google Scholar
     

  • Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R. & Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 362, 53–57 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Croissant, T. et al. Seismic cycles, earthquakes, landslides and sediment fluxes: linking tectonics to surface processes using a reduced-complexity model. Geomorphology 339, 87–103 (2019).


    Google Scholar
     

  • Liu, F., Fu, B. & Yang, S. Quantitative estimation of the evacuation time of landslide mass and sediment induced by the great events like 2008 Wenchuan earthquake along the Min Jiang River, Longmen Shan orogenic belt. Chin. J. Geophys. 56, 1517–1525 (2013).


    Google Scholar
     

  • Stolle, A. et al. Protracted river response to medieval earthquakes. Earth Surf. Processes Landforms 44, 331–341 (2019).


    Google Scholar
     

  • Zhang, F. et al. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake. Sci. Adv. 5, eaav7110 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C., Wang, M., Liu, K. & Coulthard, T. J. Landscape evolution of the Wenchuan earthquake-stricken area in response to future climate change. J. Hydrol. 590, 125244 (2020).


    Google Scholar
     

  • Lin, W.-T., Lin, C.-Y. & Chou, W.-C. Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake: A case study in Central Taiwan. Ecol. Eng. 28, 79–89 (2006).


    Google Scholar
     

  • Burchfiel, B. C. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today 18, 4–11 (2008).


    Google Scholar
     

  • Liu-Zeng, J., Wen, L., Oskin, M. & Zeng, L. S. Focused modern denudation of the Longmen Shan margin, eastern Tibetan Plateau. Geochem. Geophys. Geosyst. 12, Q11007 (2011).


    Google Scholar
     

  • Li, G. et al. Earthquakes drive focused denudation along a tectonically active mountain front. Earth Planet. Sci. Lett. 472, 253–265 (2017).

    CAS 

    Google Scholar
     

  • Shen, Z.-K. et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat. Geosci. 2, 718–724 (2009).

    CAS 

    Google Scholar
     

  • Li, G. et al. Connectivity of earthquake-triggered landslides with the fluvial network: implications for landslide sediment transport after the 2008 Wenchuan earthquake. J. Geophys. Res. Earth Surface 121, 703–724 (2016).


    Google Scholar
     

  • Li, G. et al. Seismic mountain building: landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance. Geochem. Geophys. Geosyst. 15, 833–844 (2014).


    Google Scholar
     

  • West, A. J. et al. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics. Earth Planet. Sci. Lett. 396, 143–153 (2014).

    CAS 

    Google Scholar
     

  • Chen, J. Y. & Hu, C. Y. Sediment transport rate and characteristics of gravel bed-load at Dujiangyang. J. Sediment Res. 4, 22–29 (1985).


    Google Scholar
     

  • Qu, Z. Study on Mechanics of Gravel Movement in Minjiang River. MS thesis, Tsinghua Univ. (1998).

  • Xu, M. J. Sediment study at Dujiang Yang. Sediment Res. 1, 42–57 (1981).


    Google Scholar
     

  • Turowski, J. M., Rickenmann, D. & Dadson, S. J. The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology 57, 1126–1146 (2010).


    Google Scholar
     

  • Parker, G. & Toro-Escobar, C. M. Equal mobility of gravel in streams: the remains of the day. Water Resour. Res. 38, 46-41–46-48 (2002).


    Google Scholar
     

  • Fan, X. et al. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth Syst. Sci. Data 11, 35–55 (2019).


    Google Scholar
     

  • Masteller, C. C., Finnegan, N. J., Turowski, J. M., Yager, E. M. & Rickenmann, D. History-dependent threshold for motion revealed by continuous bedload transport measurements in a steep mountain stream. Geophys. Res. Lett. 46, 2583–2591 (2019).


    Google Scholar
     

  • de Leeuw, J. et al. Entrainment and suspension of sand and gravel. Earth Surf. Dyn. 8, 485–504 (2020).


    Google Scholar
     

  • Rickenmann, D. Hyperconcentrated flow and sediment transport at steep slopes. J. Hydraul. Eng. 117, 1419–1439 (1991).


    Google Scholar
     

  • Yang, W., Qi, W. & Zhou, J. Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake. Ecol. Indic. 89, 438–444 (2018).


    Google Scholar
     

  • Dahlquist, M. P. & West, A. J. Initiation and runout of post-seismic debris flows: insights from the 2015 Gorkha Earthquake. Geophys. Res. Lett. 46, 9658–9668 (2019).


    Google Scholar
     

  • Theule, J. I., Liébault, F., Loye, A., Laigle, D. & Jaboyedoff, M. Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Nat. Hazards Earth Syst. Sci. 12, 731–749 (2012).


    Google Scholar
     

  • Xie, J., Wang, M., Liu, K. & Coulthard, T. J. Modeling sediment movement and channel response to rainfall variability after a major earthquake. Geomorphology 320, 18–32 (2018).


    Google Scholar
     

  • Attal, M. & Lavé, J. Pebble abrasion during fluvial transport: experimental results and implications for the evolution of the sediment load along rivers. J. Geophys. Res. Earth Surface 114, F04023 (2009).


    Google Scholar
     

  • Marc, O. et al. Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides. Earth Surf. Dyn. 7, 107–128 (2019).


    Google Scholar
     

  • Godard, V. et al. Spatial distribution of denudation in Eastern Tibet and regressive erosion of plateau margins. Tectonophysics 491, 253–274 (2010).


    Google Scholar
     

  • Harp, E. L. & Jibson, R. W. Landslides triggered by the 1994 Northridge, California, earthquake. Bull. Seismol. Soc. Am. 86, S319–S332 (1996).


    Google Scholar
     

  • Chen, X., Yan, Y., Fu, R., Dou, X. & Zhang, E. Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period: A discussion. Quat. Int. 186, 55–64 (2008).


    Google Scholar
     

  • Parker, G., Wilcock, P. R., Paola, C., Dietrich, W. E. & Pitlick, J. Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. Earth Surface 112, F04005 (2007).


    Google Scholar
     

  • Li, G. K., Moon, S. & Higa, J. T. Residence time of over-steepened rock masses in an active mountain range. Geophys. Res. Lett. 49, e2021GL097319 (2022).


    Google Scholar
     

  • Atwood, A. & West, A. J. Evaluation of high-resolution DEMs from satellite imagery for geomorphic applications: A case study using the SETSM algorithm. Earth Surf. Processes Landforms 47, 706–722 (2022).


    Google Scholar
     

  • Noh, M.-J. & Howat, I. M. Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and demonstration over glaciated regions. GIScience Remote Sens. 52, 198–217 (2015).


    Google Scholar
     

  • Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90 m Database https://srtm.csi.cgiar.org (2008).

  • Schwanghart, W. & Scherler, D. Short communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1–7 (2014).


    Google Scholar
     

  • Ren, Z., Zhang, Z., Dai, F., Yin, J. & Zhang, H. Co-seismic landslide topographic analysis based on multi-temporal DEM—A case study of the Wenchuan earthquake. SpringerPlus 2, 544 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roback, K. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301, 121–138 (2018).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments