Thursday, December 12, 2024
No menu items!
HomeNatureLarge global-scale vegetation sensitivity to daily rainfall variability

Large global-scale vegetation sensitivity to daily rainfall variability

  • Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pendergrass, A. G. & Knutti, R. The uneven nature of daily precipitation and its change. Geophys. Res. Lett. 45, 11,980–11,988 (2018).

    Article 

    Google Scholar
     

  • Feldman, A. F. et al. Plant responses to changing rainfall frequency and intensity. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-024-00534-0 (2024).

    Article 

    Google Scholar
     

  • Thomey, M. L. et al. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob. Change Biol. 17, 1505–1515 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Fay, P. A. et al. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8, 3053–3068 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Impact of temporal precipitation variability on ecosystem productivity. Wiley Interdiscip. Rev. Water 7, e1481 (2020).

    Article 

    Google Scholar
     

  • Sloat, L. L. et al. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8, 214–218 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. Commun. Earth Environ. 1, 34 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Guan, K. et al. Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa. Biogeosciences 11, 6939–6954 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298, 2202–2205 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross, I. et al. How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonally water-limited Northern Hemisphere shrublands and forests? Biogeosciences 9, 1007–1024 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Su, J., Zhang, Y. & Xu, F. Divergent responses of grassland productivity and plant diversity to intra-annual precipitation variability across climate regions: a global synthesis. J. Ecol. 111, 1921–1934 (2023).

    Article 

    Google Scholar
     

  • Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Precipitation temporal repackaging into fewer, larger storms delayed seasonal timing of peak photosynthesis in a semi‐arid grassland. Funct. Ecol. 36, 646–658 (2021).

    Article 

    Google Scholar
     

  • Xu, X., Medvigy, D. & Rodriguez-Iturbe, I. Relation between rainfall intensity and savanna tree abundance explained by water use strategies. Proc. Natl Acad. Sci USA. 112, 12992–12996 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Case, M. F. & Staver, A. C. Soil texture mediates tree responses to rainfall intensity in African savannas. New Phytol. 219, 1363–1372 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Heisler-White, J. L., Blair, J. M., Kelly, E. F., Harmoney, K. & Knapp, A. K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Change Biol. 15, 2894–2904 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Dryland productivity under a changing climate. Nat. Clim. Change 12, 981–994 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob. Change Biol. 25, 269–276 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sala, O. E., Parton, W. J., Joyce, L. A. & Lauenroth, W. K. Primary production of the central grassland region of the United States. Ecology 69, 40–45 (1988).

    Article 

    Google Scholar
     

  • Biederman, J. A. et al. CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America. Glob. Change Biol. 23, 4204–4221 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ukkola, A. M. et al. Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Glob. Change Biol. 27, 4367–4380 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Denissen, J. M. C. et al. Widespread shift from ecosystem energy to water limitation with climate change. Nat. Clim. Change 12, 677–684 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article 

    Google Scholar
     

  • Lian, X., Zhao, W. & Gentine, P. Recent global decline in rainfall interception loss due to altered rainfall regimes. Nat. Commun. 13, 7642 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D. Land–atmosphere drivers of landscape-scale plant water content loss. Geophys. Res. Lett. 47, e2020GL090331 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Feldman, A. F. et al. Moisture pulse-reserve in the soil–plant continuum observed across biomes. Nat. Plants 4, 1026–1033 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, C. A., Hanan, N., Scholes, R. J. & Kutsch, W. Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna. Oecologia 161, 469–480 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I—Harnessing theory. Glob. Change Biol. 29, 2926–2952 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J. P. & Parazoo, N. C. Constraining estimates of terrestrial carbon uptake: new opportunities using long-term satellite observations and data assimilation. New Phytol. 225, 105–112 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Fatichi, S., Ivanov, V. Y. & Caporali, E. Investigating interannual variability of precipitation at the global scale: is there a connection with seasonality? J. Clim. 25, 5512–5523 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Knapp, A. K. et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58, 811–821 (2008).

    Article 

    Google Scholar
     

  • Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, eabb7232 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Post, A. K. & Knapp, A. K. Plant growth and aboveground production respond differently to late-season deluges in a semi-arid grassland. Oecologia 191, 673–683 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Feldman, A. F., Chulakadabba, A., Short Gianotti, D. J. & Entekhabi, D. Landscape-scale plant water content and carbon flux behavior following moisture pulses: from dryland to mesic environments. Water Resour. Res. 57, e2020WR027592 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–900 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pendergrass, A. G. What precipitation is extreme? Science 360, 1072–1073 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kannenberg, S. A., Bowling, D. R. & Anderegg, W. R. L. Hot moments in ecosystem fluxes: high GPP anomalies exert outsized influence on the carbon cycle and are differentially driven by moisture availability across biomes. Environ. Res. Lett. 15, 054004 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wainwright, C. M., Allan, R. P. & Black, E. Consistent trends in dry spell length in recent observations and future projections. Geophys. Res. Lett. 49, e2021GL097231 (2022).

  • Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Higgins, S. I., Conradi, T. & Muhoko, E. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends. Nat. Geosci. 16, 147–153 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05 Deg CMG V061 EarthData https://doi.org/10.5067/MODIS/MOD13C1.061 (2021).

  • Vermote, E. et al. NOAA Climate Data Record (CDR) of Normalized Difference Vegetation Index (NDVI), Version 4. AVH13C1 (NOAA National Centers for Environmental Information, 2014); https://doi.org/10.7289/V5PZ56R6.

  • OCO-2-Science-Team, Gunson, M. & Eldering, A. OCO-2 Level 2 Bias-corrected Solar-induced Fluorescence and Other Select Fields from the IMAP-DOAS Algorithm Aggregated as Daily Files, Retrospective Processing V10r (Goddard Earth Sciences Data and Information Services Center, 2020).

  • Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).

    Article 

    Google Scholar
     

  • Huffman, G., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. & Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06 (Goddard Earth Sciences Data and Information Services Center, 2019).

  • Xie, P. et al. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 8, 607–626 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Contractor, S. et al. Rainfall Estimates on a Gridded Network (REGEN)—a global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci. 24, 919–943 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Roca, R. et al. FROGS: a daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data 11, 1017–1035 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Reichle, R. H. et al. Land surface precipitation in MERRA-2. J. Clim. 30, 1643–1664 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Copernicus Climate Change Service Climate Data Store. CMIP6 climate projections. Climate Data Store https://doi.org/10.24381/cds.c866074c (2021).

  • Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).

    Article 
    ADS 

    Google Scholar
     

  • NASA/LARC/SD/ASDC. CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols Daily Terra-Aqua Edition4A [Data set]. EarthData https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A (2017).

  • Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wan, Z., Hook, S. & Hulley, G. MYD11C2 MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 0.05 Deg CMG V006. EarthData https://doi.org/10.5067/MODIS/MYD11C2.006 (2015).

  • O’Neill, P. E. et al. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 3 (NASA National Snow and Ice Data Center, 2019).

  • Harmonized World Soil Database v2.0 (Food and Agriculture Organization of the United Nations, 2024); https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/.

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman, A. F., Konings, A., Piles, M. & Entekhabi, D. The Multi-Temporal Dual Channel Algorithm (MT-DCA) (Version 5) [Data set]. Zenodo https://doi.org/10.5281/zenodo.5619583 (2021).

  • Kim, S. Ancillary Data Report: Landcover Classification JPL D-53057 (Jet Propulsion Laboratory, California Institute of Technology, 2013).

  • Sala, O. E. & Lauenroth, W. K. Small rainfall events: an ecological role in semiarid regions. Oecologia 53, 301–304 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Grömping, U. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 61, 139–147 (2007).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewińska, K. E. et al. Beyond “greening” and “browning”: trends in grassland ground cover fractions across Eurasia that account for spatial and temporal autocorrelation. Glob. Change Biol. 29, 4620–4637 (2023).

    Article 

    Google Scholar
     

  • Ludwig, M., Moreno-Martinez, A., Hölzel, N., Pebesma, E. & Meyer, H. Assessing and improving the transferability of current global spatial prediction models. Glob. Ecol. Biogeogr. 32, 356–368 (2023).

    Article 

    Google Scholar
     

  • James, G. M., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer, 2014).

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).

    Article 

    Google Scholar
     

  • Li, Y. et al. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nat. Clim. Change 13, 182–188 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Greene, W. H. Econometric Analysis (Prentice Hall, 2003).

  • Griffin-Nolan, R. J., Slette, I. J. & Knapp, A. K. Deconstructing precipitation variability: rainfall event size and timing uniquely alter ecosystem dynamics. J. Ecol. https://doi.org/10.1080/10643389.2012.728825 (2021).

  • Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Madani, N., Kimball, J. S., Jones, L. A., Parazoo, N. C. & Guan, K. Global analysis of bioclimatic controls on ecosystem productivity using satellite observations of solar-induced chlorophyll fluorescence. Remote Sens. 9, 530 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In 31st Conference on Neural Information Processing System (NeurIPS, 2017); https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.

  • Andrews, T. et al. On the effect of historical SST patterns on radiative feedback. J. Geophys. Res. Atmos. 127, e2022JD036675 (2022).

  • Bueso, D. et al. Soil and vegetation water content identify the main terrestrial ecosystem changes. Natl. Sci. Rev. 10, nwad026 (2023).

  • Ives, A. R. et al. Statistical inference for trends in spatiotemporal data. Remote Sens. Environ. 266, 112678 (2021).

    Article 

    Google Scholar
     

  • Cortés, J. et al. Where are global vegetation greening and browning trends significant? Geophys. Res. Lett. 48, 1–9 (2021).

    Article 

    Google Scholar
     

  • Cortés, J., Mahecha, M., Reichstein, M. & Brenning, A. Accounting for multiple testing in the analysis of spatio-temporal environmental data. Environ. Ecol. Stat. 27, 293–318 (2020).

    Article 

    Google Scholar
     

  • Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldman, A. Feldman et al. Global one degree datasets. Zenodo https://doi.org/10.5281/zenodo.10947071 (2024).

  • Feldman, A. et al. Feldman et al. 2024 “Large global scale vegetation sensitivity to daily rainfall variability”. Zenodo https://doi.org/10.5281/zenodo.13551521 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments