Stendel, M., Francis, J., White, R., Williams, P. D. & Woollings, T. in Climate Change 3rd edn (ed. Letcher, T. M.) 327â357 (Elsevier, 2021).
Woollings, T., Drouard, M., OâReilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4, 125 (2023).
Galfi, V. M. & Messori, G. Persistent anomalies of the North Atlantic jet stream and associated surface extremes over Europe. Environ. Res. Lett. 18, 024017 (2023).
Wahl, E. R., Zorita, E., Trouet, V. & Taylor, A. H. Jet stream dynamics, hydroclimate, and fire in California from 1600 ce to present. Proc. Natl Acad. Sci. USA 116, 5393â5398 (2019).
Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S. & Coumou, D. Increasing heat and rainfall extremes now far outside the historical climate. NPJ Clim. Atmos. Sci. 4, 45 (2021).
Faranda, D., Messori, G., Jezequel, A., Vrac, M. & Yiou, P. Atmospheric circulation compounds anthropogenic warming and impacts of climate extremes in Europe. Proc. Natl Acad. Sci. USA 120, e2214525120 (2023).
Shaw, T. A. & Miyawaki, O. Fast upper-level jet stream winds get faster under climate change. Nat. Clim. Change 14, 61â67 (2024).
Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl Acad. Sci. USA 111, 12331â12336 (2014).
AghaKouchak, A. et al. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 48, 519â548 (2020).
European Environment Agency. The First European Climate Risk Assessment (EUCRA) Executive Summary (European Environment Agency, 2024).
Balch, J. K. et al. Socialâenvironmental extremes: rethinking extraordinary events as outcomes of interacting biophysical and social systems. Earthâs Future 8, e2019EF001319 (2020).
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P. & Makowski, D. Impact of extreme weather conditions on European crop production in 2018. Philos. Trans. R. Soc. B. Biol. Sci. 375, 20190510 (2020).
Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).
Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326â9331 (2017).
Sah, R. P. et al. Impact of water deficit stress in maize: phenology and yield components. Sci. Rep. 10, 2944 (2020).
Helman, D. & Bonfil, D. J. Six decades of warming and drought in the worldâs top wheat-producing countries offset the benefits of rising CO2 to yield. Sci. Rep. 12, 7921 (2022).
Kornhuber, K. et al. Risks of synchronized low yields are underestimated in climate and crop model projections. Nat. Commun. 14, 3528 (2023).
Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 39, L22805 (2012).
Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 21, 1â23 (2017).
Dorado-Liñán, I. et al. Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nat. Commun. 13, 2015 (2022).
Jain, P. & Flannigan, M. The relationship between the polar jet stream and extreme wildfire events in North America. J. Clim. 34, 6247â6265 (2021).
Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci Rep. 5, 17491 (2015).
Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 9, 180 (2018).
Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311â6320 (2018).
Weiland, R. S., van der Wiel, K., Selten, F. & Coumou, D. Intransitive atmosphere dynamics leading to persistent hot-dry or cold-wet European summers. J. Clim. 34, 1â48 (2021).
Gagen, M. H. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci. 9, 630â635 (2016).
Ljungqvist, F. C., Seim, A. & Huhtamaa, H. Climate and society in European history. WIREs Clim. Change 12, e691 (2021).
Campbell, B. M. & Ludlow, F. Climate, disease and society in late-medieval Ireland. Proc. R. Ir. Acad. Archaeol. Culture Hist. Lit. 120C, 159â252 (2020).
Camenisch, C. et al. The 1430s: a cold period of extraordinary internal climate variability during the early Sporer Minimum with social and economic impacts in north-western and central Europe. Clim. Past 12, 2107â2126 (2016).
Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).
Rydval, M. et al. Reconstructing 800 years of summer temperatures in Scotland from tree rings. Clim. Dyn. 49, 2951â2974 (2017).
Büntgen, U., Frank, D. C., Nievergelt, D. & Esper, J. Summer temperature variations in the European Alps, A.D. 755â2004. J. Clim. 19, 5606â5623 (2006).
Wanner, H., Pfister, C. & Neukom, R. The variable European Little Ice Age. Quat. Sci. Rev. 287, 107531 (2022).
Luterbacher, J. & Pfister, C. The year without a summer. Nat. Geosci. 8, 246â248 (2015).
Luterbacher, J. et al. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dyn. 18, 545â561 (2002).
Casty, C., Raible, C. C., Stocker, T. F., Wanner, H. & Luterbacher, J. A European pattern climatology 1766â2000. Clim. Dyn. 29, 791â805 (2007).
Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).
Ljungqvist, F. C. et al. Climatic signatures in early modern European grain harvest yields. Clim. Past 19, 2463â2491 (2023).
Esper, J. et al. Environmental drivers of historical grain price variations in Europe. Clim. Res. 72, 39â52 (2017).
Ljungqvist, F. C. et al. The significance of climate variability on early modern European grain prices. Cliometrica 16, 29â77 (2022).
Pfister, C. & Wanner, H. Climate and Society in Europe: The Last Thousand Years (Haupt, 2021).
Rharrabti, Y., Villegas, D., Royo, C., Martos-Núñez, V. & GarcıÌa del Moral, L. F. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res. 80, 133â140 (2003).
Yang, C., Fraga, H., van Ieperen, W. & Santos, J. A. Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agric. Syst. 182, 102844 (2020).
Campbell, B. M. The Great Transition: Climate, Disease and Society in the Late-Medieval World (Cambridge Univ. Press, 2016).
Büntgen, U., Ginzler, C., Esper, J., Tegel, W. & McMichael, A. J. Digitizing historical plague. Clin. Infect. Dis. 55, 1586â1588 (2012).
Degroot, D. et al. Towards a rigorous understanding of societal responses to climate change. Nature 591, 539â550 (2021).
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & GarcÃa-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220â224 (2011).
Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314â318 (2020).
Sun, X. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nat. Commun. 13, 1288 (2022).
Van Oldenborgh, G. J. et al. Attributing and projecting heatwaves is hard: we can do better. Earths Future 10, e2021EF002271 (2022).
van Engelen, A. F. V., Buisman, J. & Ijnsen, F. in History and Climate: Memories of the Future? (eds Jones, P. D. et al.) 101â124 (Springer, 2001).
Camuffo, D. et al. 500-Year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim. Change 101, 169â199 (2010).
Cole, G. A. & Marsh, T. J. in Climate Variability and Change: Hydrological Impacts (eds Demuth, S. et al.) Vol. 308, 483â489 (2006).
Pavese, M. P., Banzon, V., Colacino, M., Gregori, G. P. & Pasqua, M. in Climate Since AD 1500 (eds Bradley, R. S. & Jones, P. D.) 155â170 (Routledge, 1992).
Kiss, A., Wilson, R. & Bariska, I. An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May-July temperatures for Koszeg, West-Hungary. Int. J. Biometeorol. 55, 595â611 (2011).
Manley, G. Central England temperatures: monthly means 1659 to 1973. Q. J. R. Meteorol. Soc. 100, 389â405 (1974).
Parker, D. & Horton, B. Uncertainties in central England temperature 1878-2003 and some improvements to the maximum and minimum series. Int. J. Climatol. 25, 1173â1188 (2005).
Böhm, R. et al. The early instrumental warm-bias: a solution for long central European temperature series 1760â2007. Clim. Change 101, 41â67 (2010).
Murphy, C. et al. A 305-year continuous monthly rainfall series for the island of Ireland (1711â2016). Clim. Past 14, 413â440 (2018).
Alexander, L. V. & Jones, P. D. Updated precipitation series for the U.K. and discussion of recent extremes. Atmos. Sci. Lett. 1, 142â150 (2001).
Rácz, L. Carpathian Basin â the winner of the Little Ice Age climate changes: long-term time-series analysis of grain, grape and hay harvests between 1500 and 1850. Econ. Ecohist. 16, 81â96 (2020).
Clark, G. in Research in Economic History Vol. 22, 41â123 (Emerald, 2004).
Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data: winter North Pacific jet stream variability. Int. J. Climatol. 29, 851â862 (2009).
Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q. J. R. Meteorol. Soc. 136, 856â868 (2010).
Harnik, N., Galanti, E., Martius, O. & Adam, O. The anomalous merging of the African and North Atlantic jet streams during the Northern Hemisphere winter of 2010. J. Clim. 27, 7319â7334 (2014).
Lachmy, O. & Harnik, N. Wave and jet maintenance in different flow regimes. J. Atmos. Sci. 73, 2465â2484 (2016).
Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 77, 437â472 (1996).
Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
Trouet, V. & Van Oldenborgh, G. J. KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Res. 69, 3â13 (2013).
Engeland, K., Hisdal, H. & Frigessi, A. Practical extreme value modelling of hydrological floods and droughts: a case study. Extremes 7, 5â30 (2005).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc B 57, 289â300 (1995).
Wilks, D. S. âThe Stippling Shows Statistically Significant Grid Pointsâ: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteor. Soc. 97, 2263â2273 (2016).
Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981â2016. Sci. Data 7, 97 (2020).
Esper, J., Düthorn, E., Krusic, P. J., Timonen, M. & Büntgen, U. Northern European summer temperature variations over the Common Era from integrated tree-ring density records: Northern European common era summer temperatures. J. Quat. Sci. 29, 487â494 (2014).
Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201â213 (1984).
Rydval, M., Druckenbrod, D., Anchukaitis, K. J. & Wilson, R. Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Can. J. Forest Res. 46, 387â401 (2016).
Melvin, T. M. & Briffa, K. R. A âsignal-freeâ approach to dendroclimatic standardisation. Dendrochronologia 26, 71â86 (2008).
Briffa, K. R. & Melvin, T. M. in Dendroclimatology: Progress and Prospects (eds Hughes, M. K.) 113â145 (Springer, 2011).
Trouet, V., Panayotov, M. P., Ivanova, A. & Frank, D. A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (AD 1768â2008). Holocene 22, 887â898 (2012).
Esper, J. et al. Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Clim. Dyn. 54, 1367â1382 (2020).
Klippel, L. et al. A 1200+ year reconstruction of temperature extremes for the northeastern Mediterranean region. Int. J. Climatol. 39, 2336â2350 (2019).
Klesse, S., Ziehmer, M., Rousakis, G., Trouet, V. & Frank, D. Synoptic drivers of 400 years of summer temperature and precipitation variability on Mt. Olympus, Greece. Clim. Dyn. 45, 807â824 (2015).
Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69â78 (1983).
Trouet, V. A tree-ring based late summer temperature reconstruction (ad 1675â1980) for the Northeastern Mediterranean. Radiocarbon 56, S69âS78 (2014).
Helama, S., Melvin, T. M. & Briffa, K. R. Regional curve standardization: state of the art. Holocene 27, 172â177 (2017).
Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Kluwer Academic, 1990).
Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361â370 (1997).
Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251â258 (2010).
Deser, C., Terray, L. & Phillips, A. S. Forced and internal components of winter air temperature trends over North America during the past 50 Years: mechanisms and implications. J. Clim. 29, 2237â2258 (2016).
Gagen, M. et al. Exorcising the âsegment length curseâ: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17, 435â446 (2007).
Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61â78 (1998).
Christopoulou, A., Fulé, P. Z., Andriopoulos, P., Sarris, D. & Arianoutsou, M. Dendrochronology-based fire history of Pinus nigra forests in Mount Taygetos, Southern Greece. For. Ecol. Manage. 293, 132â139 (2013).
Vasileva, P. & Panayotov, M. Dating fire events in Pinus heldreichii forests by analysis of tree ring cores. Dendrochronologia 38, 98â102 (2016).
Åahan, E. A. et al. Fire history of Pinus nigra in Western Anatolia: a first dendrochronological study. Dendrochronologia 69, 125874 (2021).
Rey, D. & Neuhäuser, M. in International Encyclopedia of Statistical Science (ed. Lovric, M.) (Springer, 2011).
Xu, G., Broadman, E., Dorado-Liñán, I., & Trouet, V. Jet stream controls on European climate and agriculture since 1300 ce, Zenodo, V1, https://doi.org/10.5281/zenodo.13120683 (2024).