Thursday, January 9, 2025
No menu items!
HomeNatureJanus graphene nanoribbons with localized states on a single zigzag edge

Janus graphene nanoribbons with localized states on a single zigzag edge

  • Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Slota, M. et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557, 691–695 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lawrence, J. et al. Probing the magnetism of topological end states in 5-armchair graphene nanoribbons. ACS Nano 14, 4499–4508 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • de Oteyza, D. G. & Frederiksen, T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. J. Phys. Condens. Matter 34, 443001 (2022).

    Article 

    Google Scholar
     

  • Yazyev, O. V. & Katsnelson, M. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Son, Y.-W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haldane, F. Excitation spectrum of a generalised Heisenberg ferromagnetic spin chain with arbitrary spin. J. Phys. C 15, L1309 (1982).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, H. et al. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201 (1989).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Cao, T., Zhao, F. & Louie, S. G. Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains. Phys. Rev. Lett. 119, 076401 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, J. & Louie, S. G. Topology classification using chiral symmetry and spin correlations in graphene nanoribbons. Nano Lett. 21, 197–202 (2020).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hu, J., Zhou, S., Sun, Y., Fang, X. & Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 41, 4356–4378 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, R., Cheng, Y. & Huang, W. Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small 14, 1802091 (2018).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun. 4, 1443 (2013).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, J. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, L. et al. Janus two-dimensional transition metal dichalcogenides. J. Appl. Phys. 131, 230902 (2022).

  • Sun, Q. et al. Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions. Nano Lett. 20, 6429–6436 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rizzo, D. J. et al. Inducing metallicity in graphene nanoribbons via zero-mode superlattices. Science 369, 1597–1603 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, D.-B. & Wei, S.-H. Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons. npj Comput. Mater. 3, 32 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lee, Y.-L., Kim, S., Park, C., Ihm, J. & Son, Y.-W. Controlling half-metallicity of graphene nanoribbons by using a ferroelectric polymer. ACS Nano 4, 1345–1350 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kan, E.-j, Li, Z., Yang, J. & Hou, J. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 130, 4224–4225 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Adams, D. J. et al. Stable ferromagnetism and doping-induced half-metallicity in asymmetric graphene nanoribbons. Phys. Rev. B 85, 245405 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ovchinnikov, A. A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds: (do organic ferromagnetics exist?). Theor. Chim. Acta 47, 297–304 (1978).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ugeda, M. M., Brihuega, I., Guinea, F. & Gómez-Rodríguez, J. M. Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Palacios, J. J., Fernández-Rossier, J. & Brey, L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 77, 195428 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238–3262 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kojima, T. et al. Vectorial on‐surface synthesis of polar 2D polymer crystals. Adv. Mater. Interfaces 10, 2300214 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kojima, T. et al. Molecular-vapor-assisted low-temperature growth of graphene nanoribbons. J. Phys. Chem. C 127, 10541–10549 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Piquero-Zulaica, I. et al. Deceptive orbital confinement at edges and pores of carbon-based 1D and 2D nanoarchitectures. Nat. Commun. 15, 1062 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Topological phase transition in chiral graphene nanoribbons: from edge bands to end states. Nat. Commun. 12, 5538 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kinikar, A. et al. On‐surface synthesis of edge‐extended zigzag graphene nanoribbons. Adv. Mater. 35, 2306311 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, J. et al. Single spin localization and manipulation in graphene open-shell nanostructures. Nat. Commun. 10, 200 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nguyen, G. D. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 12, 1077–1082 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, Y.-C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamann, D. Erratum: Optimized norm-conserving vanderbilt pseudopotentials [Phys. Rev. B 88, 085117 (2013)]. Phys. Rev. B 95, 239906 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Song, S. et al. Janus graphene nanoribbons with localized states on a single zigzag edge. Zenodo https://doi.org/10.5281/zenodo.13894455 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments