Tuesday, April 1, 2025
No menu items!
HomeNatureirCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA

irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA

  • Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mehta, M., Raguraman, R., Ramesh, R. & Munshi, A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv. Drug Deliv. Rev. 191, 114569 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyn, L., Finset, A. & Ruland, C. M. Talking about feelings and worries in cancer consultations: the effects of an interactive tailored symptom assessment on source, explicitness, and timing of emotional cues and concerns. Cancer Nurs. 36, E20–E30 (2013).

    PubMed 

    Google Scholar
     

  • Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA-protein interactions. Nat. Methods 16, 225–234 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Primer 1, 20 (2021).

    CAS 
    MATH 

    Google Scholar
     

  • Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell 69, 354–369 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schell, B., Legrand, P. & Fribourg, S. Crystal structure of SFPQ-NONO heterodimer. Biochimie 198, 1–7 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wandrey, F. et al. The NF45/NF90 heterodimer contributes to the biogenesis of 60S ribosomal subunits and influences nucleolar morphology. Mol. Cell. Biol. 35, 3491–3503 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Damianov, A. et al. Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165, 606–619 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Choi, Y. D. & Dreyfuss, G. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc. Natl Acad. Sci. USA 81, 7471–7475 (1984).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pandolfo, M., Valentini, O., Biamonti, G., Rossi, P. & Riva, S. Large-scale purification of hnRNP proteins from HeLa cells by affinity chromatography on ssDNA-cellulose. Eur. J. Biochem. 162, 213–220 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Swanson, M. S. & Dreyfuss, G. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities. Mol. Cell. Biol. 8, 2237–2241 (1988).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteom. 11, M111.014050 (2012).


    Google Scholar
     

  • Kristofich, J. & Nicchitta, C. V. High-throughput quantitation of protein-RNA UV-crosslinking efficiencies as a predictive tool for high-confidence identification of RNA-binding proteins. RNA 30, 644–661 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Briata, P. et al. Diverse roles of the nucleic acid-binding protein KHSRP in cell differentiation and disease. Wiley Interdiscip. Rev. RNA 7, 227–240 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Papadopoulou, C., Patrinou-Georgoula, M. & Guialis, A. Extensive association of HuR with hnRNP proteins within immunoselected hnRNP and mRNP complexes. Biochim. Biophys. Acta 1804, 692–703 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwarzl, T. et al. Improved discovery of RNA-binding protein binding sites in eCLIP data using DEWSeq. Nucleic Acids Res. 52, e1 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Porter, D. F. et al. easyCLIP analysis of RNA-protein interactions incorporating absolute quantification. Nat. Commun. 12, 1569 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Feng, H. et al. Modeling RNA-binding protein specificity in vivo by precisely registering protein-RNA crosslink sites. Mol. Cell 74, 1189–1204 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cai, H. et al. Roles of embryonic lethal abnormal vision-like RNA binding proteins in cancer and beyond. Front. Cell Dev. Biol. 10, 847761 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothamel, K. et al. ELAVL1 primarily couples mRNA stability with the 3′ UTRs of interferon-stimulated genes. Cell Rep. 35, 109178 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Iadevaia, V. et al. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on CDKN1B/p27Kip1 3′UTRs in cisplatin treated cells. RNA Biol. 17, 33–46 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y.-C. et al. The RNA-binding protein KSRP aggravates malignant progression of clear cell renal cell carcinoma through transcriptional inhibition and post-transcriptional destabilization of the NEDD4L ubiquitin ligase. J. Biomed. Sci. 30, 68 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, A. W. Regulation of signaling from the epidermal growth factor family. J. Phys. Chem. B 126, 7475–7485 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nava, M. et al. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med. Genom. 12, 32 (2019).

    MATH 

    Google Scholar
     

  • Ma, H., Zhang, Z. & Tong, T. The effects of epidermal growth factor on gene expression in human fibroblasts. In Vitro Cell. Dev. Biol. Anim. 38, 481–486 (2002).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 135, 851–867 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mo, L. et al. An analysis of the role of HnRNP C dysregulation in cancers. Biomark. Res. 10, 19 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, R. et al. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells. Nucleic Acids Res. 45, 606–618 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Martino, F. et al. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci. Transl. Med. 14, eabo5715 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, J. H. et al. Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol. Cell. Biol. 23, 708–720 (2003).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hong, D., Park, T. & Jeong, S. Nuclear UPF1 Is associated with chromatin for transcription-coupled RNA surveillance. Mol. Cells 42, 523–529 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Singh, A. K. et al. The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. eLife 8, e41444 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. K. & Maquat, L. E. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA 25, 407–422 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob, A. G. & Smith, C. W. J. Intron retention as a component of regulated gene expression programs. Hum. Genet. 136, 1043–1057 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hurt, J. A., Robertson, A. D. & Burge, C. B. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 23, 1636–1650 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, S. et al. Identification of HnRNPC as a novel Tau exon 10 splicing factor using RNA antisense purification mass spectrometry. RNA Biol. 19, 104–116 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Almarán, B., Ramis, G., Fernández de Mattos, S. & Villalonga, P. Rnd3 Is a crucial mediator of the invasive phenotype of glioblastoma cells downstream of receptor tyrosine kinase signalling. Cells 11, 3716 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nozaki, K. et al. DDX3X induces primary EGFR-TKI resistance based on intratumor heterogeneity in lung cancer cells harboring EGFR-activating mutations. PLoS ONE 9, e111019 (2014).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nystrom, S. L. & McKay, D. J. Memes: a motif analysis environment in R using tools from the MEME Suite. PLoS Comput. Biol. 17, e1008991 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Miao, W. et al. Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell 186, 80–97 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X., Cao, Z. & Wang, Y. Amyotrophic lateral sclerosis-associated mutants of SOD1 perturb mRNA splicing through aberrant interactions with SRSF2. Anal. Chem. 96, 9713–9720 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Feng, Z., Fang, P., Zheng, H. & Zhang, X. DEP2: an upgraded comprehensive analysis toolkit for quantitative proteomics data. Bioinformatics 39, btad526 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou, J. & Zhu, L. J. trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data. Nat. Methods 16, 453–454 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ge, X. et al. Clipper: p-value-free FDR control on high-throughput data from two conditions. Genome Biol. 22, 288 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sahadevan, S. et al. htseq-clip: a toolset for the preprocessing of eCLIP/iCLIP datasets. Bioinformatics 39, btac747 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhu, L. J. et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 11, 237 (2010).

    MATH 

    Google Scholar
     

  • Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC Genom. 19, 234 (2018).


    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Narykov, O., Srinivasan, S. & Korkin, D. Computational protein modeling and the next viral pandemic. Nat. Methods 18, 444–445 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, A., Srivastava, A., Ibrahim, J. G., Patro, R. & Love, M. I. Nonparametric expression analysis using inferential replicate counts. Nucleic Acids Res. 47, e105 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Nunes, C. et al. MSGP: the first database of the protein components of the mammalian stress granules. Database 2019, baz031 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Millar, S. R. et al. A new phase of networking: the molecular composition and regulatory dynamics of mammalian stress granules. Chem. Rev. 123, 9036–9064 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ducoli, L. et al. Codes for ‘irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA’. Figshare https://doi.org/10.6084/m9.figshare.26169718 (2025).

  • Ducoli, L. et al. snakemake pipeline for ‘irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA’. Figshare https://doi.org/10.6084/m9.figshare.26156764 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments