IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).
Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).
Rajczak, J. & Schär, C. Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations: projections of precipitation extremes. J. Geophys. Res. Atmos. 122, 10773–10800 (2017).
Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).
Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 26, 5015–5033 (2022).
De Vries, I. E., Sippel, S., Pendergrass, A. G. & Knutti, R. Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth Syst. Dyn. 14, 81–100 (2023).
Zeder, J. & Fischer, E. M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extrem. 29, 100266 (2020).
Hofstätter, M., Lexer, A., Homann, M. & Blöschl, G. Large-scale heavy precipitation over Central Europe and the role of atmospheric cyclone track types. Int. J. Climatol. 38, e497–e517 (2018).
Berg, P. & Haerter, J. O. Unexpected increase in precipitation intensity with temperature — a result of mixing of precipitation types? Atmos. Res. 119, 56–61 (2013).
Formayer, H. & Fritz, A. Temperature dependency of hourly precipitation intensities – surface versus cloud layer temperature. Int. J. Climatol. 37, 1–10 (2017).
Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).
Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and The Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).
Lewis, E. et al. GSDR: a global sub-daily rainfall dataset. J. Clim. 32, 4715–4729 (2019).
Lanza, L. G. & Vuerich, E. The WMO field intercomparison of rain intensity gauges. Atmospheric Res. 94, 534–543 (2009).
Cauteruccio, A., Colli, M., Stagnaro, M., Lanza, L. G. & Vuerich, E. in Springer Handbook of Atmospheric Measurements (ed. Foken, T.) 359–400 (Springer, 2021).
Sivapalan, M., Blöschl, G., Merz, R. & Gutknecht, D. Linking flood frequency to long‐term water balance: incorporating effects of seasonality. Water Resour. Res. 41, 2004WR003439 (2005).
Breinl, K., Lun, D., Müller-Thomy, H. & Blöschl, G. Understanding the relationship between rainfall and flood probabilities through combined intensity–duration–frequency analysis. J. Hydrol. 602, 126759 (2021).
Brunetti, M. et al. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. 111, D11107 (2006).
Haslinger, K., Holawe, F. & Blöschl, G. Spatial characteristics of precipitation shortfalls in the greater Alpine region—a data-based analysis from observations. Theor. Appl. Climatol. 136, 717–731 (2019).
Haslinger, K., Hofstätter, M., Schöner, W. & Blöschl, G. Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. Clim. Dyn. 57, 1009–1021 (2021).
Bladé, I., Liebmann, B., Fortuny, D. & Van Oldenborgh, G. J. Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim. Dyn. 39, 709–727 (2012).
Ghosh, R., Müller, W. A., Baehr, J. & Bader, J. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Clim. Dyn. 48, 3547–3563 (2017).
Awan, N. K. & Formayer, H. Cutoff low systems and their relevance to large-scale extreme precipitation in the European Alps. Theor. Appl. Climatol. 129, 149–158 (2017).
van Bebber, W. Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890 (1891).
Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).
Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).
Francis, J. A., Skific, N. & Vavrus, S. J. Increased persistence of large-scale circulation regimes over Asia in the era of amplified Arctic warming, past and future. Sci. Rep. 10, 14953 (2020).
Screen, J. A. & Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40, 959–964 (2013).
Barnes, E. A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 40, 4734–4739 (2013).
Kang, J. M., Shaw, T. A. & Sun, L. Arctic sea ice loss weakens Northern Hemisphere summertime storminess but not until the late 21st century. Geophys. Res. Lett. 50, e2022GL102301 (2023).
Guilbert, J., Betts, A. K., Rizzo, D. M., Beckage, B. & Bomblies, A. Characterization of increased persistence and intensity of precipitation in the northeastern United States. Geophys. Res. Lett. 42, 1888–1893 (2015).
Du, H. et al. Extreme precipitation on consecutive days occurs more often in a warming climate. Bull. Am. Meteorol. Soc. 103, E1130–E1145 (2022).
Stjern, C. W. et al. The time scales of climate responses to carbon dioxide and aerosols. J. Clim. 36, 3537–3551 (2023).
Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. npj Clim. Atmos. Sci. 2, 24 (2019).
Risser, M. D. et al. Anthropogenic aerosols mask increases in US rainfall by greenhouse gases. Nat. Commun. 15, 1318 (2024).
Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).
Park, I.-H. & Min, S.-K. Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. J. Clim. 30, 9527–9537 (2017).
Duethmann, D. & Blöschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 22, 5143–5158 (2018).
Vicente-Serrano, S. M. et al. Recent changes of relative humidity: regional connections with land and ocean processes. Earth Syst. Dyn. 9, 915–937 (2018).
Schroeer, K. & Kirchengast, G. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Clim. Dyn. 50, 3981–3994 (2018).
Madsen, H., Arnbjerg-Nielsen, K. & Mikkelsen, P. S. Update of regional intensity–duration–frequency curves in Denmark: tendency towards increased storm intensities. Atmos. Res. 92, 343–349 (2009).
Xiao, C., Wu, P., Zhang, L. & Song, L. Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep. 6, 38506 (2016).
Allan, R. P. et al. Advances in understanding large‐scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).
Ali, H. et al. Towards quantifying the uncertainty in estimating observed scaling rates. Geophys. Res. Lett. 49, e2022GL099138 (2022).
Formetta, G., Marra, F., Dallan, E., Zaramella, M. & Borga, M. Differential orographic impact on sub-hourly, hourly, and daily extreme precipitation. Adv. Water Resour. 159, 104085 (2022).
Marra, F., Armon, M., Borga, M. & Morin, E. Orographic effect on extreme precipitation statistics peaks at hourly time scales. Geophys. Res. Lett. 48, e2020GL091498 (2021).
Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).
Blöschl, G. Flood generation: process patterns from the raindrop to the ocean. Hydrol. Earth Syst. Sci. 26, 2469–2480 (2022).
Brunner, M. I. et al. An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Commun. Earth Environ. 2, 173 (2021).
Hall, J. et al. Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth Syst. Sci. 18, 2735–2772 (2014).
Archfield, S. A., Hirsch, R. M., Viglione, A. & Blöschl, G. Fragmented patterns of flood change across the United States. Geophys. Res. Lett. 43, 10232–10239 (2016).
Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
Yang, L. et al. Climate more important for Chinese flood changes than reservoirs and land use. Geophys. Res. Lett. 48, e2021GL093061 (2021).
Chagas, V. B. P., Chaffe, P. L. B. & Blöschl, G. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 13, 5136 (2022).
Bertola, M., Viglione, A., Lun, D., Hall, J. & Blöschl, G. Flood trends in Europe: are changes in small and big floods different? Hydrol. Earth Syst. Sci. 24, 1805–1822 (2020).
Bertola, M. et al. Do small and large floods have the same drivers of change? A regional attribution analysis in Europe. Hydrol. Earth Syst. Sci. 25, 1347–1364 (2021).
International Commission on large dams. World Register of Dams General Synthesis www.icold-cigb.org/GB/world_register/general_synthesis.asp (2024).
Lun, D., Fischer, S., Viglione, A. & Blöschl, G. Significance testing of rank cross-correlations between autocorrelated time series with short-range dependence. J. Appl. Stat. 50, 2934–2950 (2023).
Auer, I. et al. HISTALP—historical instrumental climatological surface time series of the greater Alpine region. Int. J. Climatol. 27, 17–46 (2007).
Nemec, J., Gruber, C., Chimani, B. & Auer, I. Trends in extreme temperature indices in Austria based on a new homogenised dataset. Int. J. Climatol. 33, 1538–1550 (2013).
Lanza, L., Leroy, M., Alexandropoulos, C., Stagi, L. & Wauben, W. The WMO Laboratory Intercomparison of Rainfall Intensity Gauges: Final Report. Instruments and Observing Methods Report No. 84 (World Meteorological Organization, 2006).
World Meteorological Organization (WMO). WMO Field Intercomparison of Rainfall Intensity Gauges. 290 (2009).
Hofstätter, M., Chimani, B., Lexer, A. & Blöschl, G. A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour. Res. 52, 7086–7104 (2016).
Wasko, C., Sharma, A. & Johnson, F. Does storm duration modulate the extreme precipitation-temperature scaling relationship? Geophys. Res. Lett. 42, 8783–8790 (2015).
Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).
Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7, 128–132 (2017).
Zhang, S., Stier, P., Dagan, G., Zhou, C. & Wang, M. Sea surface warming patterns drive hydrological sensitivity uncertainties. Nat. Clim. Change 13, 545–553 (2023).
Schwander, M. et al. Reconstruction of Central European daily weather types back to 1763. Int. J. Climatol. 37, 30–44 (2017).
Pfister, L., Wilhelm, L., Brugnara, Y., Imfeld, N. & Brönnimann, S. Weather type reconstruction using machine learning approaches. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2024-1346 (2024).
Haslinger, K. et al. Disentangling drivers of meteorological droughts in the European greater Alpine region during the last two centuries. J. Geophys. Res. Atmos. 124, 12404–12425 (2019).
Richardson, D., Kilsby, C. G., Fowler, H. J. & Bárdossy, A. Weekly to multi‐month persistence in sets of daily weather patterns over Europe and the North Atlantic Ocean. Int. J. Climatol. 39, 2041–2056 (2019).
Jordan, P. & Talkner, P. A seasonal Markov chain model for the weather in the Central Alps. Tellus Dyn. Meteorol. Oceanogr. 52, 455–469 (2000).
Wernli, H. & Schwierz, C. Surface cyclones in the ERA-40 dataset (1958–2001). Part I: novel identification method and global climatology. J. Atmos. Sci. 63, 2486–2507 (2006).
Sigl, M. et al. 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere 12, 3311–3331 (2018).
Greilinger, M., Schöner, W., Winiwarter, W. & Kasper-Giebl, A. Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983–2014). Atmos. Environ. 132, 141–152 (2016).
Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).
Bertola, M. et al. Megafloods in Europe can be anticipated from observations in hydrologically similar catchments. Nat. Geosci. 16, 982–988 (2023).
Haslinger, K. et al. Data and code for ‘Increasing hourly heavy rainfall in Austria reflected in flood changes’. Zenodo https://doi.org/10.5281/zenodo.12684482 (2025).