Thursday, March 13, 2025
No menu items!
HomeNatureIncreasing hourly heavy rainfall in Austria reflected in flood changes

Increasing hourly heavy rainfall in Austria reflected in flood changes

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2023).

  • Fowler, H. J. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2, 107–122 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Rajczak, J. & Schär, C. Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations: projections of precipitation extremes. J. Geophys. Res. Atmos. 122, 10773–10800 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 26, 5015–5033 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • De Vries, I. E., Sippel, S., Pendergrass, A. G. & Knutti, R. Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth Syst. Dyn. 14, 81–100 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zeder, J. & Fischer, E. M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extrem. 29, 100266 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Hofstätter, M., Lexer, A., Homann, M. & Blöschl, G. Large-scale heavy precipitation over Central Europe and the role of atmospheric cyclone track types. Int. J. Climatol. 38, e497–e517 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Berg, P. & Haerter, J. O. Unexpected increase in precipitation intensity with temperature — a result of mixing of precipitation types? Atmos. Res. 119, 56–61 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Formayer, H. & Fritz, A. Temperature dependency of hourly precipitation intensities – surface versus cloud layer temperature. Int. J. Climatol. 37, 1–10 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and The Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lewis, E. et al. GSDR: a global sub-daily rainfall dataset. J. Clim. 32, 4715–4729 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lanza, L. G. & Vuerich, E. The WMO field intercomparison of rain intensity gauges. Atmospheric Res. 94, 534–543 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cauteruccio, A., Colli, M., Stagnaro, M., Lanza, L. G. & Vuerich, E. in Springer Handbook of Atmospheric Measurements (ed. Foken, T.) 359–400 (Springer, 2021).

  • Sivapalan, M., Blöschl, G., Merz, R. & Gutknecht, D. Linking flood frequency to long‐term water balance: incorporating effects of seasonality. Water Resour. Res. 41, 2004WR003439 (2005).

    Article 

    Google Scholar
     

  • Breinl, K., Lun, D., Müller-Thomy, H. & Blöschl, G. Understanding the relationship between rainfall and flood probabilities through combined intensity–duration–frequency analysis. J. Hydrol. 602, 126759 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Brunetti, M. et al. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. 111, D11107 (2006).

    ADS 
    MATH 

    Google Scholar
     

  • Haslinger, K., Holawe, F. & Blöschl, G. Spatial characteristics of precipitation shortfalls in the greater Alpine region—a data-based analysis from observations. Theor. Appl. Climatol. 136, 717–731 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Haslinger, K., Hofstätter, M., Schöner, W. & Blöschl, G. Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. Clim. Dyn. 57, 1009–1021 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bladé, I., Liebmann, B., Fortuny, D. & Van Oldenborgh, G. J. Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim. Dyn. 39, 709–727 (2012).

    Article 

    Google Scholar
     

  • Ghosh, R., Müller, W. A., Baehr, J. & Bader, J. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Clim. Dyn. 48, 3547–3563 (2017).

    Article 

    Google Scholar
     

  • Awan, N. K. & Formayer, H. Cutoff low systems and their relevance to large-scale extreme precipitation in the European Alps. Theor. Appl. Climatol. 129, 149–158 (2017).

    Article 
    ADS 

    Google Scholar
     

  • van Bebber, W. Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 18751890 (1891).

  • Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Francis, J. A., Skific, N. & Vavrus, S. J. Increased persistence of large-scale circulation regimes over Asia in the era of amplified Arctic warming, past and future. Sci. Rep. 10, 14953 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Screen, J. A. & Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40, 959–964 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Barnes, E. A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 40, 4734–4739 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kang, J. M., Shaw, T. A. & Sun, L. Arctic sea ice loss weakens Northern Hemisphere summertime storminess but not until the late 21st century. Geophys. Res. Lett. 50, e2022GL102301 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Guilbert, J., Betts, A. K., Rizzo, D. M., Beckage, B. & Bomblies, A. Characterization of increased persistence and intensity of precipitation in the northeastern United States. Geophys. Res. Lett. 42, 1888–1893 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Du, H. et al. Extreme precipitation on consecutive days occurs more often in a warming climate. Bull. Am. Meteorol. Soc. 103, E1130–E1145 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Stjern, C. W. et al. The time scales of climate responses to carbon dioxide and aerosols. J. Clim. 36, 3537–3551 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. npj Clim. Atmos. Sci. 2, 24 (2019).

    Article 

    Google Scholar
     

  • Risser, M. D. et al. Anthropogenic aerosols mask increases in US rainfall by greenhouse gases. Nat. Commun. 15, 1318 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Park, I.-H. & Min, S.-K. Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. J. Clim. 30, 9527–9537 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Duethmann, D. & Blöschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 22, 5143–5158 (2018).

  • Vicente-Serrano, S. M. et al. Recent changes of relative humidity: regional connections with land and ocean processes. Earth Syst. Dyn. 9, 915–937 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Schroeer, K. & Kirchengast, G. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Clim. Dyn. 50, 3981–3994 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Madsen, H., Arnbjerg-Nielsen, K. & Mikkelsen, P. S. Update of regional intensity–duration–frequency curves in Denmark: tendency towards increased storm intensities. Atmos. Res. 92, 343–349 (2009).

    Article 

    Google Scholar
     

  • Xiao, C., Wu, P., Zhang, L. & Song, L. Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep. 6, 38506 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Allan, R. P. et al. Advances in understanding large‐scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 1472, 49–75 (2020).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ali, H. et al. Towards quantifying the uncertainty in estimating observed scaling rates. Geophys. Res. Lett. 49, e2022GL099138 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formetta, G., Marra, F., Dallan, E., Zaramella, M. & Borga, M. Differential orographic impact on sub-hourly, hourly, and daily extreme precipitation. Adv. Water Resour. 159, 104085 (2022).

    Article 

    Google Scholar
     

  • Marra, F., Armon, M., Borga, M. & Morin, E. Orographic effect on extreme precipitation statistics peaks at hourly time scales. Geophys. Res. Lett. 48, e2020GL091498 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Blöschl, G. Flood generation: process patterns from the raindrop to the ocean. Hydrol. Earth Syst. Sci. 26, 2469–2480 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Brunner, M. I. et al. An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Commun. Earth Environ. 2, 173 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hall, J. et al. Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth Syst. Sci. 18, 2735–2772 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Archfield, S. A., Hirsch, R. M., Viglione, A. & Blöschl, G. Fragmented patterns of flood change across the United States. Geophys. Res. Lett. 43, 10232–10239 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Climate more important for Chinese flood changes than reservoirs and land use. Geophys. Res. Lett. 48, e2021GL093061 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chagas, V. B. P., Chaffe, P. L. B. & Blöschl, G. Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 13, 5136 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bertola, M., Viglione, A., Lun, D., Hall, J. & Blöschl, G. Flood trends in Europe: are changes in small and big floods different? Hydrol. Earth Syst. Sci. 24, 1805–1822 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bertola, M. et al. Do small and large floods have the same drivers of change? A regional attribution analysis in Europe. Hydrol. Earth Syst. Sci. 25, 1347–1364 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • International Commission on large dams. World Register of Dams General Synthesis www.icold-cigb.org/GB/world_register/general_synthesis.asp (2024).

  • Lun, D., Fischer, S., Viglione, A. & Blöschl, G. Significance testing of rank cross-correlations between autocorrelated time series with short-range dependence. J. Appl. Stat. 50, 2934–2950 (2023).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Auer, I. et al. HISTALP—historical instrumental climatological surface time series of the greater Alpine region. Int. J. Climatol. 27, 17–46 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Nemec, J., Gruber, C., Chimani, B. & Auer, I. Trends in extreme temperature indices in Austria based on a new homogenised dataset. Int. J. Climatol. 33, 1538–1550 (2013).

    Article 

    Google Scholar
     

  • Lanza, L., Leroy, M., Alexandropoulos, C., Stagi, L. & Wauben, W. The WMO Laboratory Intercomparison of Rainfall Intensity Gauges: Final Report. Instruments and Observing Methods Report No. 84 (World Meteorological Organization, 2006).

  • World Meteorological Organization (WMO). WMO Field Intercomparison of Rainfall Intensity Gauges. 290 (2009).

  • Hofstätter, M., Chimani, B., Lexer, A. & Blöschl, G. A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour. Res. 52, 7086–7104 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wasko, C., Sharma, A. & Johnson, F. Does storm duration modulate the extreme precipitation-temperature scaling relationship? Geophys. Res. Lett. 42, 8783–8790 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7, 128–132 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zhang, S., Stier, P., Dagan, G., Zhou, C. & Wang, M. Sea surface warming patterns drive hydrological sensitivity uncertainties. Nat. Clim. Change 13, 545–553 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Schwander, M. et al. Reconstruction of Central European daily weather types back to 1763. Int. J. Climatol. 37, 30–44 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Pfister, L., Wilhelm, L., Brugnara, Y., Imfeld, N. & Brönnimann, S. Weather type reconstruction using machine learning approaches. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2024-1346 (2024).

  • Haslinger, K. et al. Disentangling drivers of meteorological droughts in the European greater Alpine region during the last two centuries. J. Geophys. Res. Atmos. 124, 12404–12425 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Richardson, D., Kilsby, C. G., Fowler, H. J. & Bárdossy, A. Weekly to multi‐month persistence in sets of daily weather patterns over Europe and the North Atlantic Ocean. Int. J. Climatol. 39, 2041–2056 (2019).

    Article 

    Google Scholar
     

  • Jordan, P. & Talkner, P. A seasonal Markov chain model for the weather in the Central Alps. Tellus Dyn. Meteorol. Oceanogr. 52, 455–469 (2000).

    Article 
    MATH 

    Google Scholar
     

  • Wernli, H. & Schwierz, C. Surface cyclones in the ERA-40 dataset (1958–2001). Part I: novel identification method and global climatology. J. Atmos. Sci. 63, 2486–2507 (2006).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sigl, M. et al. 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere 12, 3311–3331 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Greilinger, M., Schöner, W., Winiwarter, W. & Kasper-Giebl, A. Temporal changes of inorganic ion deposition in the seasonal snow cover for the Austrian Alps (1983–2014). Atmos. Environ. 132, 141–152 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bertola, M. et al. Megafloods in Europe can be anticipated from observations in hydrologically similar catchments. Nat. Geosci. 16, 982–988 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Haslinger, K. et al. Data and code for ‘Increasing hourly heavy rainfall in Austria reflected in flood changes’. Zenodo https://doi.org/10.5281/zenodo.12684482 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments