Scott, J. F. Ferroelectrics go bananas. Phys. Condens. Matter 20, 9–11 (2008).
Yang, Y. et al. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634, 833–841 (2024).
Fukunaga, M. & Noda, Y. New technique for measuring ferroelectric and antiferroelectric hysteresis loops. J. Phys. Soc. Jpn https://doi.org/10.1143/JPSJ.77.064706 (2008).
Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).
Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017).
Seol, D., Kim, B. & Kim, Y. Non-piezoelectric effects in piezoresponse force microscopy. Curr. Appl Phys. 17, 661–674 (2017).
Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 9, 6484–6492 (2015).
Kim, B., Seol, D., Lee, S., Lee, H. N. & Kim, Y. Ferroelectric-like hysteresis loop originated from non-ferroelectric effects. Appl. Phys. Lett. 109, 102901 (2016).
Revenant, C., Toinet, S., Lawrence Bright, E. & Benwadih, M. The longitudinal and transverse piezoelectric effects of the ferroelectric polymer P(VDF-TrFE). Macromol. Mater. Eng. 310, 2400420 (2025).
Gorbunov, A. V. et al. True ferroelectric switching in thin films of trialkylbenzene-1,3,5-tricarboxamide (BTA). Phys. Chem. Chem. Phys. 18, 23663–23672 (2016).
Urbanaviciute, I. et al. Tuning the ferroelectric properties of trialkylbenzene-1,3,5-tricarboxamide (BTA). Adv. Electron. Mater. 3, 1600530 (2017).